« Mathematical foundations: (3) Lattice theory — Part II »

Patrick Cousot

Jerome C. Hunsaker Visiting Professor Massachusetts Institute of Technology Department of Aeronautics and Astronautics

> cousot@mit.edu www.mit.edu/~cousot

Course 16.399: "Abstract interpretation"

http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/

Course 16.399: "Abstract interpretation", Thursday March 29th, 2005 — 1 — © P. Cousot, 2005

Robert Lee Moore

Course 16.399: "Abstract interpretation", Thursday March 29th, 2005 - 3 -

© P. Cousot, 2005

Moore families

Moore family

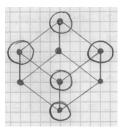
Let $\langle P, \square \rangle$ be a poset with top element \top . A *Moore* family is $M \subseteq P$, such that:

- $\top \in M$
- If $X \in \wp(M) \setminus \{\emptyset\}$ then $\sqcap X$ exists in P and $\sqcap X \in M$ or equivalently 1
- If $X \in \wp(M)$ then $\sqcap X$ exists in P and $\sqcap X \in M$ that is M is closed under meet.

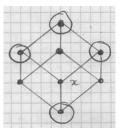
Course 16.399: "Abstract interpretation", Thursday March 29th, 2005

¹ Since $\square \emptyset = \top$.

- Example:



- Counter-example:



x is missing!

Course 16,399; "Abstract interpretation", Thursday March 29th, 2005

© P. Cousot, 2005

Example of Moore closure

- Let \equiv be an equivalence relation on a set X
- Let us define $S \subseteq X$ to be \equiv -saturated iff it is a union of equivalence classes:

$$orall x_1, x_2 \in X: (x_1 \in S \wedge x_2 \equiv x_1) \Longrightarrow (x_2 \in S)$$

- Let $\mathcal{M} = \{ S \subseteq X \mid S \text{ is } \equiv \text{-saturated} \}$
- $-\mathcal{M}$ is a Moore family in $\langle \wp(X), \subset, \emptyset, X, \cup, \cap \rangle$

PROOF. Assume $M = \{S_{\alpha} \mid \alpha \in \Delta\} \subseteq \mathcal{M}$. Then $x_1 \in \bigcap M \Longrightarrow x_1 \in \bigcap_{\alpha \in \Delta} S_{\alpha} \Longrightarrow \forall \alpha \in \Delta : x_1 \in S_{\alpha} \Longrightarrow (\forall \alpha \in \Delta : (x_1 \in S_{\alpha} \wedge x_2 \equiv x_1) \Longrightarrow (x_2 \in S_{\alpha}))$ whence $((x_1 \in \bigcap_{\alpha \in \Delta} S_\alpha \wedge x_2 \equiv x_1) \Longrightarrow (x_2 \in \bigcap_{\alpha \in \Delta} S_\alpha))$ so $x_1 \in \bigcap M \wedge x_2 \equiv x_1$ $\Longrightarrow x_2 \in \bigcap M$ proving that $\bigcap M \in \mathcal{M}$.

Course 16.399: "Abstract interpretation". Thursday March 29th, 2005 — 7 —

© P. Cousot, 2005

Moore closure

A Moore closure \mathcal{M} is for the particular case of $\langle \wp(X), \rangle$ \subset , \emptyset , X, \cup , \cap \rangle :

- $-X \in \mathcal{M}$
- If Y ⊂ \mathcal{M} then $\cap Y \in \mathcal{M}$

The elements of \mathcal{M} are called *Moore closed sets* or *closed* sets or saturated sets, etc..., depending on the mathematical context. A Moore closure is also called Moore collection, closed system, ∩-structure, etc.

Example: convex subsets of a poset

Let $\langle P, \leq \rangle$ be a pre-order (\leq is reflexive and transitive). Given $a, b \in P$, define

$$[a,b] \stackrel{\mathrm{def}}{=} \{x \in P \mid a \leq x \wedge x \leq b\}$$

Call $S \subseteq P$ to be *convex* whenever

$$a,b \in S \Longrightarrow [a,b] \subseteq S$$

Then $\mathcal{M} = \{S \subseteq P \mid S \text{ is convex}\}\$ is a Moore family of $\langle \wp(P), \subset, \emptyset, P, \cup, \cap \rangle$

PROOF. – Let S_{α} , $\alpha \in \Delta$ be a family of convex subsets of P i.e. $\forall \alpha \in \Delta$:

If $a,b\in\bigcap_{\alpha\in\Delta}S_{\alpha}$ then $\forall \alpha\in\Delta:a,b\in S_{\alpha}$ so $\forall \alpha\in\Delta:[a,b]\subseteq S_{\alpha}$ (since S_{α} is convex) whence $[a,b] \subseteq \bigcap_{\alpha \in \Delta} S_{\alpha}$ (def. of glb) proving that $\bigcap_{\alpha \in \Delta} S_{\alpha} \in \mathcal{M}$.

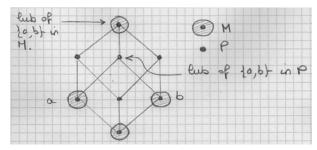
- If $\bigcap_{\alpha \in \Lambda} S_{\alpha}$ is \emptyset , then \emptyset is convex, so in that case $\bigcap_{\alpha \in \Lambda} S_{\alpha} \in \mathcal{M}$
- If Δ is empty, $\bigcap_{\alpha\in\emptyset} S_{\alpha} = P$ which is convex
- $-\mathcal{M}$ is closed under arbitrary intersections whence is a Moore family

Course 16,399: "Abstract interpretation", Thursday March 29th, 2005

© P. Cousot, 2005

П

Note that in general, the lub in the Moore family M is not the same as the lub in the original poset P:



So in general a Moore family of a complete lattice is not a complete sublattice of this complete lattice.

Course 16.399: "Abstract interpretation", Thursday March 29th, 2005 — 11 —

© P. Cousot, 2005

A Moore family in a poset is a complete lattice

THEOREM. Let $\langle P, \, \square, \, \square \rangle$ be a topped poset and $M \subseteq$ P be a Moore family then $\langle M, \square \rangle$ is a complete lattice $\langle M, \, \sqsubset, \, \sqcap M, \, \top \rangle$.

PROOF. Since $\langle P, \square \rangle$ is a poset and $M \subseteq P, \langle M, \square \rangle$ is a poset. Being a Moore family it is topped and any subset $S \subseteq M$ has $\sqcap S \in M$ so \sqcap is the meet in M. It follows that M is a complete lattice, which lub is:

$$\sqcup S \ = \ \sqcap \{y \in M \mid \forall x \in S : x \sqsubseteq y\} \in M$$

The infimum is $\sqcap M \in M$.

Moore family/complete lattice of safety properties

Let Σ be a set of states and $\Sigma^{\vec{\infty}}$ be the set of finite or infinite sequences on Σ . A trace property is $P \subset \Sigma^{\vec{\infty}}$. A safety property is $S \subseteq \Sigma^{\vec{\infty}}$ such that:

$$orall \sigma \in arSigma^{ec{\infty}}: (\sigma
ot\in S) \iff (\exists i \geq 1: \sigma \swarrow i
ot\in S)$$

where $\sigma \swarrow i = \sigma_0 \dots \sigma_{\min\{i,|\sigma|\}-1}$ and $|\sigma|$ is the length of σ .

THEOREM. The set Safe($\Sigma^{\vec{\infty}}$) of safety properties on $\langle \wp(\Sigma^{\vec{\infty}}), \subset, \emptyset, \Sigma^{\vec{\infty}}, \cup, \cap \rangle$

is a Moore family whence a complete lattice.

Course 16.399; "Abstract interpretation", Thursday March 29th, 2005

© P. Cousot, 2005

П

PROOF. – The top element Σ^{∞} is a safety property since both sides of the implication are false in the definition (1)

- Let P_{α} , $\alpha \in \Delta$ be a family of safety properties: $\forall \sigma \in \Sigma^{\vec{\infty}} : (\sigma \not\in P_{\alpha}) \iff (\exists i \geq 1 : \sigma \swarrow i \not\in P_{\alpha})$
 - $\begin{array}{l} \text{- } \forall \sigma \in \varSigma^{\vec{\bowtie}} : \sigma \not \in \bigcap_{\alpha \in \Delta} P_{\alpha} \Longrightarrow \exists \alpha : \sigma \not \in P_{\alpha} \Longrightarrow (\exists i \geq 1 : \sigma \swarrow i \not \in P_{\alpha}) \Longrightarrow \\ (\exists i \geq 1 : \sigma \swarrow i \not \in \bigcap_{\alpha \in \Delta} P_{\alpha}). \end{array}$
 - Conversely, $\forall \sigma \in \varSigma^{\vec{\alpha}} : (\exists i \geq 1 : \sigma \swarrow i \not\in \bigcap_{\alpha \in \Delta} P_{\alpha}) \Longrightarrow (\exists \alpha \in \Delta : \exists i \geq 1 : \sigma \swarrow i \not\in P_{\alpha}) \Longrightarrow (\exists \alpha \in \Delta : \exists i \geq 1 : \sigma \swarrow i \not\in P_{\alpha}) \Longrightarrow \sigma \not\in \bigcap_{\alpha \in \Delta} P_{\alpha}$

It follows that $\bigcap_{\alpha \in \Delta} P_{\alpha}$ is a safety property since $\forall \sigma \in \Sigma^{\tilde{\infty}} : (\sigma \notin \bigcap_{\alpha \in \Delta} P_{\alpha}) \iff (\exists i \geq 1 : \sigma \swarrow i \notin \bigcap_{\alpha \in \Delta} P_{\alpha}).$

So Safe(Σ^{∞}) contains the top and is closed under intersection whence is a Moore family hence is a complete lattice.

Note that $\mathsf{Safe}(\varSigma^{\vec{\infty}})$ is not a complete sublattice of $\langle \wp(\varSigma^{\vec{\infty}}), \subseteq \rangle$ since $\forall n \in \mathbb{N} : \{a^n b\}$ is a safety property whereas $\bigcup_{n \in \mathbb{N}} \{a^n b\}$ = $a^* b$ is not (since it is not closed by limits).

Course 16.399: "Abstract interpretation", Thursday March 29th, 2005

.3 — © P. Cousot, 2005

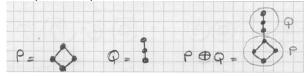
Linear (ordinal) sum of posets

Let $\langle P, \leq \rangle$ and $\langle Q, \sqsubseteq \rangle$ be two posets. Their linear (ordinal) sum is $\langle P, \leq \rangle \oplus \langle Q, \sqsubseteq \rangle \stackrel{\text{def}}{=} \langle P \oplus Q, \preceq \rangle$ such that:

$$A - P \oplus Q \stackrel{\mathrm{def}}{=} \{ \langle 0, \ x
angle \mid x \in P \} \cup \{ \langle 1, \ y
angle \mid y \in Q \}$$

$$egin{aligned} -\left\langle i,\ x
ight
angle \leq \left\langle j,\ y
ight
angle \overset{ ext{def}}{=} &(i=j=0 \land x \leq y) \ ee &(i=0 \land j=1) \ ee &(i=j=1 \land x \sqsubseteq y) \end{aligned}$$

The linear (ordinal) sum of posets is a poset. Example:



Course 16,399: "Abstract interpretation". Thursday

- 15 -

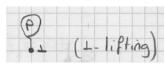
P Couset 200

Combinations of posets

Bottom/top lifting

Given the posets $\langle P, \leq \rangle$, $\langle \perp, = \rangle$ and $\langle \top, = \rangle$

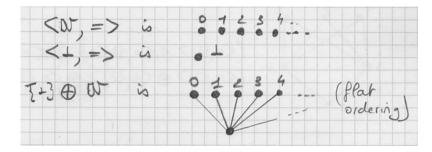
- bottom lifting $P_{\perp} \stackrel{\text{def}}{=} \{\bot\} \oplus P$ adds a bottom to P:



- top lifting $P^{\top} \stackrel{\text{def}}{=} P \oplus \{\top\}$ adds a top to P:

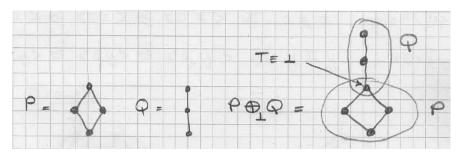
Flat ordering

Given a set S, and posets $\langle S, = \rangle$ and $\langle \{\bot\}, = \rangle$, Scott's flat ordering is S_{\perp} . For example:



Course 16.399: "Abstract interpretation", Thursday March 29th, 2005

Example:



Course 16,399: "Abstract interpretation". Thursday March 29th, 2005 — 19 —

© P. Cousot, 2005

Smashed linear sum (or smashed ordinal sum) of posets

Let $\langle P, \leq, \top \rangle$ and $\langle Q, \sqsubseteq, \perp \rangle$ be two posets such that P has a top \top and Q has a bottom \bot . Their smashed linear sum (or smashed ordinal sum) is

$$\langle P, \leq \rangle \oplus_{\perp} \langle Q, \sqsubseteq \rangle \stackrel{\mathrm{def}}{=} \langle P \setminus \{\top\}, \leq \rangle \oplus \langle Q, \sqsubseteq \rangle \\ \sim \langle P, \leq \rangle \oplus \langle Q \setminus \{\bot\}, \sqsubseteq \rangle$$

(so that it is obtained from the linear sum $\langle P, \subseteq \rangle \oplus$ $\langle Q, \sqsubseteq \rangle$ by identifying the top \top of P with the bottom \perp of Q).

Course 16,399: "Abstract interpretation". Thursday March 29th, 2005

© P. Cousot, 2005

Disjoint (cardinal) sum of posets

Let $\langle P, \leq \rangle$ and $\langle Q, \Box \rangle$ be two posets. Their disjoint (cardinal) sum is $\langle P, \leq \rangle + \langle Q, \sqsubseteq \rangle \stackrel{\text{def}}{=} \langle P + Q, \preceq \rangle$ such that:

$$egin{aligned} -P+Q \stackrel{ ext{def}}{=} \{\langle 0,\ x
angle \mid x \in P\} \cup \{\langle 1,\ y
angle \mid y \in Q\} \end{aligned}$$

$$egin{aligned} -\left\langle i,\,x
ight
angle &\preceq\left\langle j,\,y
ight
angle \overset{ ext{def}}{=} &(i=j=0\land x\leq y)\ &\lor\left(i=j=1\land x\sqsubseteq y
ight) \end{aligned}$$

- Intuition:

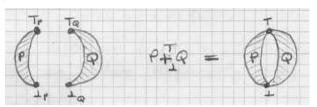
- Example 1: $\langle \{\bot\}, = \rangle \oplus \langle \{0\}, = \rangle \oplus (\langle \{-\}, = \rangle + \langle \{+\}, = \rangle)$ $\oplus \langle \{\top\}, = \rangle$ is (up to an isomorphism):

- Example 2: $\langle \{0\}, = \rangle \oplus (\langle \{1\}, = \rangle + \langle \{2\}, = \rangle) \oplus (\langle \{3\}, = \rangle)$ $+\langle \{4\}, =\rangle +\langle \{5\}, =\rangle$) is (up to an isomorphism):

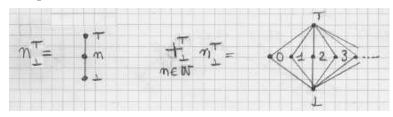
Course 16.399: "Abstract interpretation", Thursday March 29th, 2005

© P. Cousot, 2005

Intuition:



Example:



Course 16.399: "Abstract interpretation", Thursday March 29th, 2005

© P. Cousot, 2005

Smashed disjoint (cardinal) sum of posets

Let $\langle P, \leq, \perp_P, \top_P \rangle$ and $\langle Q, \sqsubseteq, \perp_P, \top_P \rangle$ be two posets. The smashed disjoint sum $\langle P, \leq \rangle + \downarrow^{\top} \langle Q, \sqsubseteq \rangle$ is $\langle P + \downarrow^{\top} Q, \leq \rangle$ where:

$$P +_{\perp}^{ op} Q \stackrel{ ext{def}}{=} \{ \langle 0, \, x
angle \mid x \in P \setminus \{\perp_P, op_P\} \} \ \cup \ \{ \langle 1, \, y
angle \mid y \in Q \setminus \{\perp_Q, op_Q\} \} \ \cup \ \{\perp, op\}$$

with ordering < such that:

- $-\perp < \perp < \langle 0, x \rangle < \top < \top$ for all $x \in P \setminus \{\perp_P, \top_P\}$
- $-\perp \leq \langle 1, y \rangle \leq \top$ for all $y \in Q \setminus \{\bot_Q, \top_Q\}$
- $-\langle 0, x \rangle < \langle 0, x' \rangle$ iff x < x' and $x, x' \in P \setminus \{\bot_P, \top_P\}$
- $-\langle 1, y \rangle \leq \langle 1, y' \rangle$ iff $y \sqsubseteq y'$ and $y, y' \in Q \setminus \{\bot_Q, \top_Q\}$

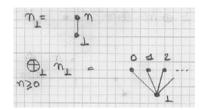
Course 16.399: "Abstract interpretation", Thursday March 29th, 2005

© P. Cousot, 2005

More generally, we can write:

- + for the cardinal sum
- -+ for the \perp -smashed cardinal sum
- $-+^{\top}$ for the \top -smashed cardinal sum
- -+ for the \perp and \top -smashed cardinal sum

For example:



Course 16.399: "Abstract interpretation", Thursday March 29th, 2005

The cartesian (cardinal, componentwise) product of posets

Let $\langle P_1, \leq_1 \rangle, \ldots, \langle P_n, \leq_n \rangle$ be posets. The cartesian product

$$P_1 imes \ldots imes P_n \stackrel{ ext{def}}{=} \{ \langle x_1, \ \ldots, \ x_n
angle \mid igwedge_{i=1}^n x_i \in P_i \}$$

can be made a poset $\langle P_1 \times \ldots \times P_n, \stackrel{i=1}{\leq} \rangle$ with the componentwise ordering:

$$\langle x_1, \ \ldots, \ x_n
angle \stackrel{\cdot}{\leq} \langle y_1, \ \ldots, \ y_n
angle \stackrel{ ext{def}}{=} igwedge_{i=1}^n x_i \leq_i y_i$$

Course 16.399: "Abstract interpretation". Thursday March 29th, 2005 — 25 —

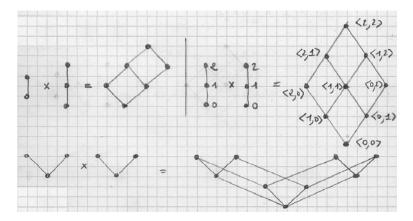
The componentwise ordering $\dot{<}$ is sometimes denoted $\leq_1 \times \ldots \times \leq_n$.

If the relations \leq_i , i = 1, ..., n are reflexive, symmetric, antisymmetric, transitive, a preorder, an equivalence, a directed order or a partial order then so is the componentwise ordering.

Course 16,399: "Abstract interpretation". Thursday March 29th, 2005

© P. Cousot, 2005

Examples:



Course 16.399: "Abstract interpretation", Thursday March 29th, 2005

Smashed cartesian (cardinal, componentwise) product of posets

Let $\langle P, \leq \rangle$ and $\langle Q, \sqsubseteq \rangle$ be posets with infima \perp_P, \perp_Q and suprema \top_P and \top_Q .

The smashed cartesian product $\langle P, \leq \rangle \times_{\perp} \langle Q, \sqsubseteq \rangle$ of $\langle P, \leq \rangle$ and $\langle Q, \sqsubseteq \rangle$ is $\langle P \times_{\perp} Q, \preceq \rangle$ such that:

$$P imes_{\perp} Q \stackrel{ ext{def}}{=} \{ \langle x, \, y
angle \mid x \in P \setminus \{ ot_P, op_P \} \land \ U \in \{ ot_P, op_Q \} \}$$

where \perp , $\top \notin P \cup Q$ and

 $-\perp \preceq \perp \preceq \langle x, y \rangle \preceq \top \preceq \top$ for all $x \in P \setminus \{\bot_P, \top_P\}$ and $y \in Q \setminus \{\bot_Q, \top_Q\}$

 $-\langle x, y \rangle \leq \langle x', y' \rangle$ iff $x \leq x' \wedge y \sqsubseteq y'$ for all $x, x' \in P \setminus \{\bot_P, \top_P\}$ and $y, y' \in Q \setminus \{\bot_Q, \top_Q\}$

Course 16,399: "Abstract interpretation". Thursday March 29th, 2005

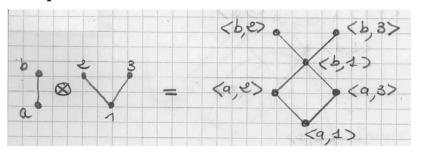
Same definitions if $\langle P, < \rangle$ and $\langle Q, \square \rangle$ have only one bottom or top.

Example:

Course 16,399: "Abstract interpretation", Thursday March 29th, 2005

© P. Cousot, 2005

Example:



Course 16.399: "Abstract interpretation", Thursday March 29th, 2005

© P. Cousot, 2005

The lexicographic (ordinal) product of posets

Given posets $\langle P_1, \leq_1 \rangle, \ldots, \langle P_n, \leq_n \rangle$, the cartesian product

$$P_1 imes \ldots imes P_n \stackrel{ ext{def}}{=} \{ \langle x_1, \, \ldots, \, x_n
angle \mid igwedge_{i=1}^n x_i \in P_i \}$$

can be made a poset by the lexicographic ordering $<^n$:

$$\langle x_1, \, \ldots, \, x_n
angle <^n \langle y_1, \, \ldots, \, y_n
angle \stackrel{ ext{def}}{=} \exists i \in [1, n] : orall j < i :$$

$$x_j = y_j \wedge x_i <_i y_i$$

$$\langle x_1, \ldots, x_n \rangle \leq^n \langle y_1, \ldots, y_n \rangle \stackrel{\text{def}}{=} \langle x_1, \ldots, x_n \rangle <^n \ \langle y_1, \ldots, y_n \rangle \ \lor \bigwedge_{i=1}^n x_i = y_i$$

Course 16.399: "Abstract interpretation", Thursday March 29th, 2005

Pointwise ordering of maps on posets

Let $f, g \in D \mapsto P$ be maps on the poset $\langle P, \leq \rangle$. The pointwise ordering between such maps is

$$f \stackrel{.}{\leq} g \stackrel{\mathrm{def}}{=} orall x \in D: f(x) \leq g(x)$$

Example:

$$f\in \mathbb{N}\mapsto \mathbb{N}\,\,f(x)=2x$$

$$g \in \mathbb{N} \mapsto \mathbb{N} \ g(x) = 3x$$

We have $f \leq g$ since $\forall x \in \mathbb{N} : f(x) = 2x \leq 3x = g(x)$.

If the cartesian product $P^n = \underbrace{P \times \ldots \times P}$ is seen as a

map of $[1, n] \mapsto P$, then the componentwise ordering on P^n coincide with the pointwise ordering on $[1, n] \mapsto P$.

Course 16,399: "Abstract interpretation", Thursday March 29th, 2005

Cardinal power of posets

Given a set X and a poset $\langle P, < \rangle$, the cardinal power P^X is the poset $\langle X \mapsto P, \leq \rangle$ of maps of X into P for the pointwise ordering $f \stackrel{.}{\leq} g \stackrel{\text{def}}{=} \forall x \in X : f(x) \leq g(x)$.

Since $n = \{0, ..., n-1\}$, P^n can be isomorphically viewed as:

- The cardinal product $\{\langle x_0, \ldots, x_n \rangle \mid \bigwedge_{i=1}^{n-1} x_i \in P\}$
- The set of maps $n \mapsto P$

Course 16,399: "Abstract interpretation". Thursday March 29th, 2005 — 33 —

© P. Cousot, 2005

Ordinal/cardinal sum/product/power of posets/cpos/lattices/complete lattices

Let $\langle P, \leq \rangle$ and $\langle Q, \sqsubseteq \rangle$ be posets. If $\langle P, \leq \rangle$ and $\langle Q, \sqsubseteq \rangle$ are respectively

- posets
- cpos
- lattices
- complete lattices

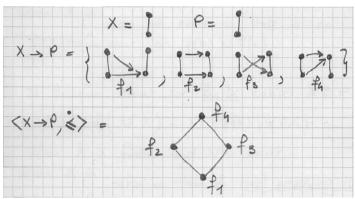
then

- the ordinal sum $P \oplus Q$
- the smashed ordinal sum $P \oplus_{\perp} Q$
- the cardinal sum P+Q
- the smashed cardinal sum P + Q

Course 16.399: "Abstract interpretation", Thursday March 29th, 2005

© P. Cousot, 2005

Example:



- the ordinal product $P \otimes Q$
- the cardinal product Q^P

is respectively

- a poset
- а сро
- a lattice
- a complete lattice

PROOF. tedious but trivial.

Course 16.399: "Abstract interpretation", Thursday March 29th, 2005

© P. Cousot, 2005

Course 16.399: "Abstract interpretation", Thursday March 29th, 2005

© P. Cousot, 2005

П

Bibliography

- B.A. Davey & H.A. Priestley "Introduction to lattices and order" Cambridge University Press, 2nd edition, 2002, 298 p.
- G. Birkhoff "Lattice theory" American mathematical Society, Colloquium Publications, Vol. 25, 3rd edition, 1979, 418 p.
- G. Grätzer "General Lattice Theory" Birkhüser verlag, Basel, 2nd edition, 1998, 663 p.

Course 16.399: "Abstract interpretation", Thursday March 29th, 2005 — 37 — © P. Cousot, 2005

THE END

My MIT web site is http://www.mit.edu/~cousot/

The course web site is http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/.

Course 16.399: "Abstract interpretation", Thursday March 29th, 2005

© P. Cousot, 2005