« Mathematical foundations:

(4) Ordered maps and Galois connexions » Part II

Patrick Cousot

Jerome C. Hunsaker Visiting Professor Massachusetts Institute of Technology Department of Aeronautics and Astronautics

> couset@mit.edu www.mit.edu/~cousot

Course 16.399: "Abstract interpretation"

http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/

Course 16,393: "Abstract intercretation", Thresday April 9th, 2009

Poset Images

Course 16,399: "Abstract intercretation", Thuesday April 9th, 2009

© F. Couset, 2005

The image of a complete lattice by a complete join preserving map is a complete lattice

THEOREM. Let $\langle L, \, \Box, \, \bot, \, \top, \, \Box, \, \Box \rangle$ be a complete lattice, $\langle M, \leq \rangle$ be a poset and $f \in L \stackrel{\perp}{\longmapsto} M$ which preserves existing lubs. Then $F(L) \stackrel{\mathrm{def}}{=} \{ f(x) \mid x \in L \}$ is a complete lattice (so M is a complete lattice when f is surjective).

PROOF. – Any subset X of f(L) is the image by f of some subset X' of L: f(X') = X where $X' \stackrel{\text{def}}{=} \{x \in L \mid f(x) \in X\}$. LX' exists in the complete lattice L so $f(\bot X') = \bigvee f(X')$ where $\bigvee f(X')$ is the lub of f(X') in M, which exists since f preserves existing lubs.

- It follows that $\forall x \in X' : \exists y \in X : f(y) = x \text{ and } x = f(y) \le \bigvee f(X') \text{ by def.}$ of lubs in M so $\forall x \in X' : x \leq \bigvee X$ proving that $\bigvee X$ is an upper bound of X in M. But $\bigvee X = \bigvee f(X') = f(|X'|)$ belongs to f(L) so $\bigvee X$ is an upper bound of X in f(L).
- Let z be any other upper bound of X in f(L). Let $z' \in L$: f(z') = z. We have $\forall x \in X : x \leq z$ so $\forall x' \in X' : f(x') \leq f(z')$ so $\bigvee f(X') \leq f(z')$ in M because $\bigvee f(X')$ is the lub of f(X') in M. But $\bigvee f(X') = f(|X'|) \in F(L)$ so $\bigvee f(X') \le f(z')$ in f(L) that is $\forall z \in f(L) : \forall x \in X : x \le z \Longrightarrow \bigvee X \le z$ so $\bigvee X$ is the lub of X in f(L).
- By definition $\langle f(L), \leq, \vee \rangle$ is a complete lattice.

@ F. Couset, 2005

Image of a complete lattice by a Galois connection

THEOREM. Let $\langle L, \sqsubseteq, \bot, \top, \bot, \Gamma \rangle$ be a complete lattice, $\langle P, \leq \rangle$ be a poset and $\langle L, \sqsubseteq \rangle \stackrel{\gamma}{\longleftrightarrow} \langle P, \leq \rangle$ be a Galois connection. Then $\langle \alpha(L), \leq, \alpha(\bot), \alpha(\top), \lambda X \cdot \alpha(\bot \gamma(X)), \alpha(\bot \gamma(X$ $\lambda X \cdot \alpha(\lceil \gamma(X) \rceil)$ is a complete lattice.

PROOF. – In a Galois connection α preserves existing lubs, so $\langle \alpha(L), \leq \rangle$ is a complete lattice.

- We have $\forall y \in P : \bot \sqsubseteq \gamma(x)$ so $\alpha(\bot) \le x$ proving that $\alpha(\bot)$ is the infimum of P and of $\alpha(L)$.
- $\forall x \in L : x \leq \text{ so } \alpha(x) \leq \alpha(x)$ by monotony, proving that $\alpha(x)$ is the supremum of $\alpha(L)$.

Course 16.399: "Abstract intercretation", Threeday April 9th, 2009

@ F. Couset, 2005

- Given $X \subset \alpha(L)$, X is the image of $X' \subset L : \alpha(X') = X$. We have shown that $\forall X = \alpha(|X'|)$. Since α preserves existing lubs, $\alpha(|X'|) =$ $\bigvee (\alpha(X')) = \bigvee \alpha \circ \gamma \circ \overline{\alpha}(X') = \alpha(||(\gamma \circ \alpha(X'))) = \alpha(||\gamma(X))$ proving that $\bigvee X = \alpha(|\gamma(X)|).$
- $\ \forall x \in X : \prod \gamma(X) = \prod_{x' \in X} \gamma(x') \sqsubseteq \gamma(x) \text{ so that by monotony } \alpha(\prod_{x' \in X} \gamma(x')) \le \gamma(x')$ $\alpha \circ \gamma(x) \le x$ since $\alpha \circ \gamma$ is reductive. It follows that $\alpha(\bigcap \gamma(X))$ is a lower bound of X.
- Let y be another lower bound of X: $\forall x \in X : y \sqsubseteq x$. By monotony, $\gamma(y) \sqsubseteq$ $\gamma(x)$ so $\gamma(y) \sqsubseteq \bigcap_{x \in X} \gamma(x) = \bigcap \gamma(X)$ by def. of glb. So $y \sqsubseteq \alpha(\bigcap \gamma(X))$ by def. of Galois connections. It follows that $\alpha(\lceil \gamma(X) \rceil)$ is the glb of X.

Course 16,399: "Abstract intercretation", Threeday Arril 5th, 2005

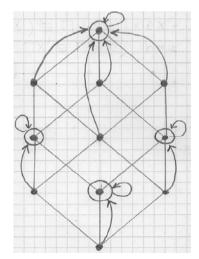
@ F. Couset, 2005

The image of a complete lattice by a closure operator is a complete lattice

THEOREM. Let ρ be an upper closure operator on a complete lattice $\langle L, \, \Box, \, \bot, \, \top, \, \Box, \, \Gamma \rangle$. Then $\langle \rho(L), \, \Box, \, \rho(\bot), \, \Box, \,$ \top , $\lambda X \cdot \rho(\bot X)$, \Box is a complete lattice.

Course 16.399: "Abstract interpretation", Thuesday April 9th, 2009

Example:



^[1] M. Ward, The Closure Operators of a Lattice, Annals of Mathematics 43 (1942), 191-198.

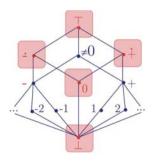
PROOF. We have shown that $\langle P, \leq \rangle \xrightarrow{\Gamma_F} \langle \rho(P), \leq \rangle$ and so we have a complete lattice $\langle \rho(L), \sqsubseteq, \rho(\bot), \rho(\bot), \lambda X \cdot \rho(\bot X), \lambda X \cdot \rho(\Box X) \rangle$

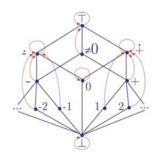
- Since ρ is extensive, we have $\top \sqsubseteq \rho(\top)$ and by def. of top $\rho(\top) \sqsubseteq \top$ so by antisymmetry $\rho(\top) = \top$.
- For all $X \subseteq \rho(L)$ there exists an $X' \subseteq L$ such that $\rho(X') = X$ so $\rho(\Gamma X) = \rho(\Gamma \rho(X')) \sqsubseteq \Gamma \rho(\rho(X')) = \Gamma \rho(X') = \Gamma X$ by monotony, idempotence and $\rho(X') = X$. Moreover $\Gamma X \sqsubseteq \rho(\Gamma X)$ by extensivity. By antisymmetry, we conclude that $\rho(\Gamma X) = \Gamma X$.
- We conclude that $\langle \rho(L), \sqsubseteq, \rho(\bot), \top, \lambda X \cdot \rho(\bot X), \Gamma \rangle$ is a complete lattice.

Course 16.399: "Abstract interpretation", Threeday April 9th, 2009

9 — 6 F. Couset, 2005

- if $x \in L$ then $\rho(x) = \prod \{y \in \mathcal{M} \mid x \sqsubseteq y\} \in \mathcal{M}$ since \mathcal{M} is a Moore family. So $\rho(\rho(x)) = \prod \{y \in \mathcal{M} \mid \rho(x) \sqsubseteq y\} \sqsubseteq \rho(x)$ since $\rho(x) \in \{y \in \mathcal{M} \mid \rho(x) \sqsubseteq y\}$ by reflexivity. Moreover $x \sqsubseteq \rho(x)$ so $\rho(x) \sqsubseteq \rho(\rho(x))$ by monotony. By antisymmetry, $\rho(x) = \rho(\rho(x))$, proving ρ to be idempotent.
- By definition of a Moore family $\rho(x) \in \mathcal{M}$ so $\rho(L) \subseteq \mathcal{M}$. Now if $x \in \mathcal{M}$ then $\rho(x) = x$ so $x \in \rho(L)$, proving $\rho(L) = \mathcal{M}$.





Course 16,395: "Abstract interpretation", Thuesday April 5th, 200

Г

Closure operator induced by a Moore family

THEOREM. Let $\langle L, \sqsubseteq, \perp, \top, \vdash, \vdash \rangle$ be a complete lattice and $\mathcal{M} \subseteq L$ be a Moore family of L (i.e. $\forall X \subseteq \mathcal{M}$: $\prod X \in \mathcal{M}$). The operator $\rho \in L \mapsto L$ defined by

$$ho(x) \stackrel{\mathrm{def}}{=} igcap \{ y \in \mathcal{M} \mid x \sqsubseteq y \}$$

is a closure operator on L such that $\rho(L) = \mathcal{M}$

PROOF.

- If: $x \sqsubseteq y$ then $y \sqsubseteq z \Longrightarrow x \sqsubseteq z$ so $\{z \in \mathcal{M} \mid y \sqsubseteq z\} \subseteq \{z \in \mathcal{M} \mid x \sqsubseteq z\}$ hence $\bigcap \{z \in \mathcal{M} \mid x \sqsubseteq z\} \sqsubseteq \bigcap \{z \in \mathcal{M} \mid y \sqsubseteq z\}$ that is $\rho(x) \sqsubseteq \rho(y)$, proving ρ to be monotone.
- We have $\forall z \in \{y \in \mathcal{M} \mid x \sqsubseteq y\} : x \sqsubseteq z \text{ so } x \sqsubseteq \prod \{y \in \mathcal{M} \mid x \sqsubseteq y\} \text{ hence } x \sqsubseteq \rho(x), \text{ proving that } \rho \text{ is extensive.}$

Course 16.399: "Abstract, interpretation", Thuesday April 9th, 2009 — 10 — (6) F. Couset, 2009

The least closure operator greater than or equal to a monotone operator on a complete lattice

THEOREM. Let f be an operator on a complete lattice $\langle L, \sqsubseteq, \perp, \top, \perp, \Gamma \rangle$. Then $\mathsf{uclo}(f) \stackrel{\text{def}}{=} \lambda x \cdot \prod \{y \in L \mid x \sqsubseteq y \land f(y) \sqsubseteq y\}$ is the \sqsubseteq -least closure operator on L which is \sqsubseteq -greater than or equal to f.

PROOF. $\neg \forall z \in \{y \mid x \sqsubseteq y \land f(y) \sqsubseteq y\}$, we have $x \sqsubseteq z$ so $x \sqsubseteq \bigcap \{y \in L \mid x \sqsubseteq y \land f(y) \sqsubseteq y\} = \mathsf{uclo}(f)(x)$ so $\mathsf{uclo}(f)$ is extensive.

- If $x \sqsubseteq x'$ then $(x' \sqsubseteq y \land f(y) \sqsubseteq y) \Longrightarrow (x \sqsubseteq y \land f(y) \sqsubseteq y)$ so $\{y \mid x' \sqsubseteq y \land f(y) \sqsubseteq y\} \subseteq \{y \mid x \sqsubseteq y \land f(y) \sqsubseteq y\}$ whence $\mathsf{uclo}(f)(x) = \bigcap \{y \mid x \sqsubseteq y \land f(y) \sqsubseteq y\} \sqsubseteq \bigcap \{y \mid x' \sqsubseteq y \land f(y) \sqsubseteq y\} = \mathsf{uclo}(f)(x')$ proving that $\mathsf{uclo}(f)$ is monotonic.
- $uclo(f)(x) \sqsubseteq uclo(f)(uclo(f)(x))$ since uclo(f) is extensive and monotone.

- If $f(y) \sqsubseteq y$ then $y \in \{z \mid y \le z \land f(z) \sqsubseteq z\}$ so $\mathsf{uclo}(f)(y) = \prod \{z \in L \mid x \sqsubseteq z\}$ $z \wedge f(z) \sqsubseteq z\} \sqsubseteq y$. So $(x \sqsubseteq y \wedge f(y) \sqsubseteq y) \Longrightarrow (x \sqsubseteq y \wedge \mathsf{uclo}(f)(y) \sqsubseteq y)$ hence $\{y \in L \mid x \sqsubseteq y \land f(y) \sqsubseteq y\} \subseteq \{y \in L \mid x \sqsubseteq y \land \mathsf{uclo}(f)(y) \sqsubseteq y\}$ so $\operatorname{uclo}(f)(\operatorname{uclo}(f)(x)) = \prod \{y \in L \mid x \sqsubseteq y \land \operatorname{uclo}(f)(y) \sqsubseteq y\} \sqsubseteq \prod \{y \in L \mid x \sqsubseteq y \land \operatorname{uclo}(f)(y) \sqsubseteq y\}$ $y \wedge f(y) \sqsubseteq y$ = uclo(f)(y)
- By antisymmetry, uclo(f)(uclo(f)(x)) = uclo(f)(x) proving idempotence.
- Let ρ be a closure operator on L such that $\forall x \in L = f(x) \sqsubseteq \rho(x)$. We have $\forall x \in L : x \sqsubseteq \rho(x)$ and $f(\rho(x)) \sqsubseteq \rho(\rho(x)) = \rho(x)$ proving uclo(f)(x) $\Box \cap \{y \in L \mid x \Box y \land f(y) \Box y\} \subseteq \rho(x)$ whence that uclo(f) is the \Box -least closure operator on L which is \square -greater than or equal to f.

Course 16.399: "Abstract interpretation", Threeday April 5th, 2009

© F. Couset, 2005

Г

A closure operator on monotonic functions

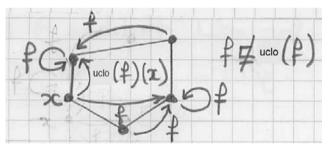
THEOREM. Let $\langle L, \, \Box, \, \bot, \, \top, \, \Box, \, \Box \rangle$ be a complete lattice. The operator $\mathsf{uclo}(f) \stackrel{\mathrm{def}}{=} \lambda x \ \ \bigcap \{y \in L \mid x \sqsubseteq y \land f(y) \sqsubseteq y\}$ is an upper closure operator in $\langle L \stackrel{\text{in}}{\longmapsto} L, \stackrel{\dot{\sqsubseteq}}{\sqsubseteq}, \stackrel{\dot{\bot}}{\downarrow}, \stackrel{\dot{\bot}}{\downarrow},$ $\dot{\vdash}$) (but in general not on $L \mapsto L$).

PROOF. – We have shown that uclo is monotone on $L \mapsto L$ whence it is on the subset $L \stackrel{\text{m}}{\longmapsto} L$ since for all f, uclo(f) is monotone.

- We have shown that if ρ is a closure operator such that $f \sqsubseteq \rho$ then $uclo(f) \sqsubseteq$ ρ so that in particular for $f = \rho = \operatorname{uclo}(q)$ we get $\operatorname{uclo}(\operatorname{uclo}(q)) \sqsubseteq \operatorname{uclo}(q)$ since uclo(a) is a closure operator.
- Notice that uclo(f) may not be extensive on $L \mapsto L$ as shown by the following counter example:

Course 16.399: "Abstract intermetation", Threeday Amil 9th, 2009

© F. Couset, 2005



- However if $f \in L \stackrel{\text{m}}{\longmapsto} L$ is monotone, we have $\forall x \in L : (x \sqsubseteq y \land f(y) \sqsubseteq y)$ $\Longrightarrow (f(y) \sqsubseteq y)$ so $f(x) \sqsubseteq \bigcap \{y \in L \mid x \sqsubseteq y \land f(y) \sqsubseteq y\} = \mathsf{uclo}(f)(x)$ proving $\forall f \in L \stackrel{\text{fn}}{\longmapsto} L : f \sqsubseteq \mathsf{uclo}(f)$
- By monotony, $uclo(q) \stackrel{.}{\sqsubset} uclo(uclo(q))$ since uclo(q) is an upper closure operator whence monotone, so uclo(q) = uclo(uclo(q)) by antisymmetry, proving the idempotence of uclo.

The complete lattice of closure operators on a complete lattice

THEOREM. Let $\langle L, \, \square, \, \perp, \, \top, \, \square, \, \Gamma \rangle$ be a complete lattice. The set of upper closure operators on L is a complete lattice $\langle \mathsf{uclo}(L \stackrel{\mathsf{m}}{\longmapsto} L), \dot{\sqsubseteq}, \lambda x \cdot x, \dot{\top}, \lambda X \cdot \mathsf{uclo}(\dot{\sqsubseteq} X), \dot{\vdash} \rangle \blacksquare$

[2] M. Ward, The Closure Operators of a Lattice, Annals of Mathematics 43 (1942), 191-196.

Course 16,395: "Abstract interpretation", Thuesday April 5th, 2005

@ F. Couset, 2005

PROOF. - Let C_L be the set of all closure operators on L. We have $C_L \subseteq$ $(L \stackrel{\text{m}}{\longmapsto} L)$ since closure operators are monotonic. We let $uclo \stackrel{\text{def}}{=} \lambda f \cdot \lambda x \cdot \prod \{y \in I\}$ $L \mid x \sqsubseteq y \land f(y) \sqsubseteq y$ as before.

- We have shown that $uclo(L \xrightarrow{m} L) \subseteq C_I$ since uclo(f) is an upper closure operator whenever f is monotonic.
- Conversely, if $\rho \in C_I$, $uclo(\rho)$ is the least upper closure operator pointwise greater than or equal to ρ , that is ρ itself. So $C_I \subseteq \mathsf{uclo}(L \stackrel{\mathrm{m}}{\longmapsto} L)$.
- By antisymmetry, $C_I = \operatorname{uclo}(L \stackrel{\mathrm{m}}{\longmapsto} L)$.
- Since $\langle L \stackrel{\text{m}}{\longmapsto} L, \sqsubseteq, _, \stackrel{\text{-}}{\sqsubseteq}, \sqsubseteq, \vdash \rangle$ is a complete lattice, its image $C_L =$ $\operatorname{uclo}(L \xrightarrow{\operatorname{m}} L)$ by the closure operator uclo is also a complete lattice $\langle C_L, \, \Box, \,$ $\mathsf{uclo}(_), \ ^-, \ \lambda X \ \mathsf{uclo}(\bot X), \ \Box \rangle.$
- For the infimum, uclo(_), observe that

$$\begin{array}{l} \operatorname{uclo}(_) \ = \ \lambda x \cdot \bigcap \{ y \in L \mid x \sqsubseteq y \wedge _(y) \sqsubseteq y \} \\ \\ = \ \lambda x \cdot \bigcap \{ y \in L \mid x \sqsubseteq y \wedge _ \sqsubseteq y \} \\ \\ = \ \lambda x \cdot \bigcap \{ y \in L \mid x \sqsubseteq y = \lambda x \cdot x \} \end{array}$$

which is the \Box -least closure operator.

Course 16,395: "Abstract intercretation", Threeday Arril 5th, 2009

The complete lattice of Galois connections on a complete lattice

Theorem. – Let $\langle L, \sqsubseteq, \bot, \top, \bot, \Gamma \rangle$ be a complete lattice

$$- \text{ Let GC}(L) = \{ \langle \alpha, \, \gamma \rangle \mid \exists \langle M, \, \leq \rangle : \langle L, \, \sqsubseteq \rangle \xleftarrow{\gamma} \langle M, \, \leq \rangle \}$$

- Let \equiv be the equivalence relation on GC(L) defined by $\langle \alpha_1, \gamma_1 \rangle \equiv \langle \alpha_2, \gamma_2 \rangle$ iff $\gamma_1 \circ \alpha_1 = \gamma_2 \circ \alpha_2$.
- $-\langle \mathsf{GC}(L)|_{\equiv}, \sqsubseteq_{\equiv}, [\langle \lambda x \cdot x, 1_L \rangle]_{\equiv}, [\langle \lambda x \cdot \top, 1_L \rangle]_{\equiv},$ $\lambda X \cdot [\langle \mathsf{uclo}ig(ig|_{\langle lpha, \, \gamma
 angle \in X} \gamma \circ lpha ig), \, 1_L
 angle]_{\equiv}, \, \lambda X \cdot [\langle ig|_{\langle lpha, \, \gamma
 angle \in X} \gamma \circ lpha, \, 1_L
 angle]_{\equiv}
 angle$ where uclo $\stackrel{\mathrm{def}}{=} \lambda f \cdot \lambda x \cdot \prod \{ y \in L \mid x \sqsubseteq y \wedge f(y) \sqsubseteq y \}.$

Course 16,395: "Abstract intermetation", Threeday Amil 5th, 2005. © F. Couset, 2005

PROOF. $-\equiv$ is obviously reflexive, symmetric and transitive, when an equivalence relation

- Observe that $\langle L, \sqsubseteq \rangle \xleftarrow{1_L} \langle L, \sqsubseteq \rangle$ and $1_L \circ \gamma \circ \alpha = \gamma \circ \alpha$ so $\langle \gamma \circ \alpha, 1_L \rangle \equiv$ $\langle \alpha, \gamma \rangle$. Let C_L be the set of upper closure operators on L. $\gamma \circ \alpha \in C_L$. Define $\Pi([\langle \alpha, \gamma \rangle]_{\equiv}) \stackrel{\text{def}}{=} \gamma \circ \alpha$ and $\Pi^{-1}(\rho) \stackrel{\text{def}}{=} [\langle \rho, 1_L \rangle]_{\equiv}$. Then Π is a bijection between GC(L) and C_L . Since C_L is a complete lattice, GC(L) inherits its structure up to the isomorphism Π .

The complete lattice of safety properties

Bifinitary traces

- $-\Sigma$ set of states
- $\Sigma^{\vec{n}} \stackrel{\text{def}}{=} \{0, \dots, n-1\} \mapsto \Sigma$, finite sequences σ of length $|\sigma|=n$. The *i*-th element of $\sigma\in x^{\vec{n}}$ is $\sigma(i)$ abbreviated σ_i so $\sigma = \sigma_0 \sigma_1 \dots \sigma_{n-1}$ including the empty sequence $\Sigma^{\vec{0}} \stackrel{\mathrm{def}}{=} \{ \vec{\epsilon} \}$
- $-\Sigma^{\vec{\star}} \stackrel{\text{def}}{=} \left[\int \Sigma^{\vec{n}} \right]$

finite sequences

 $-\Sigma^{\vec{+}} \stackrel{\text{def}}{=} | | \Sigma^{\vec{n}}$ $n\in\mathbb{N}\setminus\{0\}$

finite nonempty sequences

Course 16.399: "Abstract intercretation", Thuesday Arril 9th, 2009

- $-\Sigma^{\vec{\omega}} \stackrel{\text{def}}{=} \mathbb{N} \mapsto \Sigma$ infinite sequences σ of length $|\sigma| = \omega$ where $\forall i \in \mathbb{N} : i < \omega$
- $-\stackrel{{oldsymbol
 abla}^{ec{{f x}}}}{=} \stackrel{{f def}}{=} \stackrel{{oldsymbol
 abla}^{ec{{f x}}}}{\cup} \stackrel{{oldsymbol
 abla}^{ec{\omega}}}{=}$

bifinitary sequences

 $- \sum_{i} \vec{\nabla} \stackrel{\text{def}}{=} \sum_{i} \vec{+} \sum_{i} \vec{\omega}$

nonempty bifinitary sequences

Course 16.399: "Abstract interpretation", Thuesday April 5th, 2005

© F. Couset, 2005

Prefixes of bifinitary traces

The prefix:

$$\sigma \swarrow p$$

of length $p \in \mathbb{N}$ of a sequence $\sigma \in \Sigma^{\vec{\alpha}}$ is:

 $-\sigma = \sigma_0 \dots \sigma_{n-1} \in \Sigma^{\vec{n}}$

finite sequences

- $\sigma \checkmark 0 = \vec{\epsilon}$
- $\sigma p = \sigma_0 \dots \sigma_{p-1}$

 $1 \le p \le n$

- $\sigma / p = \sigma / n = \sigma$

 $p \ge n$

 $-\sigma = \sigma_0 \dots \sigma_n \dots \in \Sigma^{\vec{\omega}}$

infinite sequences

- $-\sigma \sqrt{0} = \vec{\epsilon}$
- $\sigma \sqrt{p} = \sigma_0 \dots \sigma_{p-1}$

 $p \ge 1$

 $-\forall \sigma \in \varSigma^{\vec{\alpha}} : \forall p \in \mathbb{N} : \sigma \swarrow p \in \varSigma^{\vec{\ast}};$

Prefix closure

- Prefixes of bifinitary sequences:

$$\operatorname{PCI}(\sigma) \stackrel{\mathrm{def}}{=} \{\sigma \swarrow p \mid p \in \mathbb{N}_+\} \qquad \qquad \sigma \in \Sigma^{\mathfrak{C}}$$

- Prefix closure of sets of bifinitary sequences:

$$\operatorname{PCI}(X) \stackrel{\mathrm{def}}{=} igcup_{\sigma \in X} \operatorname{PCI}(\sigma) \qquad X \in \wp(\varSigma^{ec{\infty}})$$

Prefix partial ordering

- The order relation "is a prefix of" $(\sigma, \zeta \in \Sigma^{\vec{\infty}})$ is $\sigma \prec \zeta \stackrel{\text{def}}{=} \exists \beta \in \Sigma^{\vec{\alpha}} : \sigma \cdot \beta = \zeta$ prefix ordering $\sigma \prec \zeta \stackrel{\text{def}}{=} \sigma \prec \zeta \land \sigma \neq \zeta$ strict partial ordering
- $-\sigma \prec \zeta \Leftrightarrow (\sigma \in PCI(\zeta) \lor \sigma = \zeta \in \Sigma^{\vec{\omega}})$
- $-\sigma \prec \zeta \Leftrightarrow PCI(\sigma) \subseteq PCI(\zeta)$
- $-\sigma = \zeta \Leftrightarrow PCI(\sigma) = PCI(\zeta)$
- $-\sigma \in \Sigma^{\vec{*}} \Leftrightarrow |PCI(\sigma)| < \omega$
- $-\sigma \in PCI(\zeta) \Leftrightarrow (\sigma \in \Sigma^{\vec{+}} \wedge \exists \beta : \sigma \cdot \beta = \zeta)$
- $-\operatorname{PCI}(X) = \{ \sigma \in \Sigma^{\vec{+}} \mid \exists \zeta \in X : \sigma \prec \zeta \}$

Course 16,399: "Abstract interpretation", Threeday April 9th, 2009

Properties of the prefix closure

- For finite sequences, PCI is a topological closure operator on $\wp(\Sigma^{\vec{*}})$ and $\wp(\Sigma^{\vec{+}})$:
 - PCI $\in \wp(\Sigma^{\vec{*}}) \mapsto \wp(\Sigma^{\vec{*}})$
 - PCI $\in \wp(\Sigma^{\vec{+}}) \mapsto \wp(\Sigma^{\vec{+}})$
 - $X \subseteq PCI(X)$ increasing/extensive
 - PCI(PCI(X)) = PCI(X)idempotent
- $PCI(X \cup Y) = PCI(X) \cup PCI(Y)^{\perp}$ additive $- PCI(\emptyset) = \emptyset$ 0-preserving

1 This implies $X \subseteq Y \Rightarrow \operatorname{FQ}(X) \subseteq \operatorname{FQ}(Y)$. Course 16.399: "Abstract interpretation", Thuesday April 9th, 2009

© F. Couset, 2005

- For bifinitary sequences, PCI satisfies:
 - PCI $\in \wp(\Sigma^{\alpha}) \mapsto \wp(\Sigma^{\vec{*}})$
 - PCI $\in \wp(\Sigma^{\vec{\infty}}) \mapsto \wp(\Sigma^{\vec{+}})$
 - $X \subseteq PCI(X)$, when $X \cap \Sigma^{\vec{\omega}} \neq \emptyset$
 - PCI(PCI(X)) = PCI(X)

idempotent

- $PCI(X \cup Y) = PCI(X) \cup PCI(Y)^2$

additive

- $PCI(\emptyset) = \emptyset$

0-preserving

Galois connection between sets of finite traces and their prefix closure

$$\begin{split} &\langle \wp(\varSigma^{\vec{*}}), \; \subseteq \rangle \xleftarrow{1} \; \langle \text{PCI}(\wp(\varSigma^{\vec{*}})), \; \subseteq \rangle \\ &\langle \wp(\varSigma^{\vec{-}}), \; \subseteq \rangle \xleftarrow{1} \; \langle \text{PCI}(\wp(\varSigma^{\vec{-}})), \; \subseteq \rangle \end{split}$$

PROOF. – $PCI(X) \subseteq Y$

$$\Rightarrow X \subseteq Y$$

[PCI is extensive]

$$\Rightarrow X \subseteq 1(Y)$$

[1 is identity]

$$\Rightarrow PCI(X) \subseteq PCI(Y)$$

[1 is identity and PCI is monotonic]

$$\Rightarrow$$
 PCI $(X)\subseteq$ PCI

 $\Rightarrow \mathsf{PCl}(X) \subseteq \mathsf{PCl}(\mathsf{PCl}(Z))$ [since $Y \in \mathsf{PCl}(\wp(\Sigma^*))$ so $\exists Z \subseteq \Sigma^* : Y = \mathsf{PCl}(Z)$]

$$\Rightarrow PCI(X) \subseteq PCI(Z)$$

[since PCI is idempotent]

$$\Rightarrow \operatorname{PCI}(X) \subseteq Y$$

[since Y = PCI(Z)]

² This implies $X \subseteq Y \Rightarrow \text{FCI}(X) \subseteq \text{FCI}(Y)$.

Limits of chains of traces

- Let $\alpha_0 \prec \alpha_1 \prec \ldots \prec \alpha_n \prec \ldots$ be a \prec -increasing chain;
 - If the chain is finite or stationnary at rank ℓ , its limit is $\lim \alpha_n = \alpha_\ell$,
 - Else, the chain is infinite, always eventually strictly increasing, in which case its limit is $\lim_{n\in\mathbb{N}} \alpha_n = \lambda \in \Sigma^{\vec{\omega}}$ such that:

$$orall n \in \mathbb{N} : \lambda \swarrow |lpha_n| \ = \ lpha_n$$

- The limit exists and is unique;

Course 16.399: "Abstract intercretation", Threeday April 9th, 2009

@ F. Couset, 2005

Limits of sets of bifinitary traces

- If $L \subseteq \Sigma^{\vec{\infty}}$ then:

$$\lim_{n} L \stackrel{\text{def}}{=} \{\lim_{n} \alpha_{n} \mid \alpha_{0} \leq \alpha_{1} \leq \ldots \leq \alpha_{n} \leq \ldots \leq L\}$$

- Lim is a topological closure operator on $\wp(\Sigma^{\tilde{\infty}})$.

PROOF. - $X \subseteq \lim X$

extensive

- $\lim X \cup Y = \lim X \cup \lim Y$ additive (since any infinite sequence in $\alpha_0 \prec \alpha_1 \prec \ldots \prec \alpha_n \prec \ldots$ is $X \cup Y$ has infinitely many elements hence its limits in X else has finitely many elements in X and infinitely many elements hence its limits in Y.)
- $\lim \lim X = \lim X$

idempotent

 $-\lim \emptyset = \emptyset$

0-strict

Course 16,395: "Abstract intermetation", Threeday Amil 5th, 2005

© F. Couset, 2005

Galois connection between sets of bifinitary traces and their prefix closure

$$\langle \wp(\varSigma^{\vec{\infty}}), \subseteq \rangle \xrightarrow{\lim} \langle PCI(\wp(\varSigma^{\vec{+}})), \subseteq \rangle$$
 (1)

PROOF. -
$$PCI(X) \subseteq Y$$

 $\Rightarrow \{\sigma \in \Sigma^{\perp} | \exists \zeta \in X : \sigma \leq \zeta\} \subseteq Y$
 $\Rightarrow \forall \sigma \in \Sigma^{\perp} : \forall \zeta \in X : (\sigma \leq \zeta) \Rightarrow (\sigma \in Y)$
 $\Rightarrow X \subseteq \{\zeta \mid \forall \sigma \in \Sigma^{\perp} : (\sigma \leq \zeta) \Rightarrow (\sigma \in Y)\}$
- If $\zeta \in \Sigma^{\perp}$, $\zeta \leq \zeta$ so $\zeta \in Y$ hence $\zeta \in \lim Y$;
- If $\zeta \in \Sigma^{\omega}$, we have $PCI(\zeta) \subseteq Y$ whence $\lim PCI(\zeta) = \zeta \in \lim Y$;

- If
$$\zeta \in \Sigma^{\omega}$$
, we have $PCI(\zeta) \subseteq Y$ whence $\lim PCI(\zeta) = \zeta \in \lim Y$;

 $\Rightarrow X \subseteq \lim Y$.

- Reciprocally, if $X \subset \lim Y$ then $PCI(X) \subset PCI(\lim Y)$ and we must show that $PCI(\lim Y) \subseteq Y$;
- lim Y contains Y plus infinite traces λ:
- We must show that $PCI(\lambda) \subseteq Y$;
- Otherwise let σ a prefix of λ not in Y:
- $\lambda = \lim \alpha_n$ with $\alpha_0 \prec \alpha_1 \prec \ldots \prec \alpha_n \ldots$ Let n be minimal such that $|\alpha_n| \supseteq |\sigma|$. We have $\sigma \preceq \alpha_n$, $\alpha_n \in Y$ and $Y \in PCI(\wp(\Sigma^+))$ so $\sigma \in Y$, a contradiction.

Closure by prefix and limits

Lim © PCI is a topological closure operator. (2)

PROOF. - Lim and PCI are both topological closure operators so that it remains to prove that:

$$Lim \circ PCl \circ Lim \circ PCl = Lim \circ PCl$$

which follows from (1) which implies $Lim \in PCI \in Lim = Lim$.

Corollary (1 $\stackrel{\text{def}}{=} \lambda x \cdot x$ is the identity):

$$\langle \wp(\varSigma^{\vec{\infty}}), \subseteq
angle \stackrel{1}{\varprojlim_{\mathsf{DCC}}} \langle \mathsf{Lim} \circ \mathsf{PCI}(\wp(\varSigma^{\vec{\infty}})), \subseteq
angle \quad (3)$$

Course 16.395: "Abstract interpretation", Threeday April 5th, 2005

- (6) F. Couset, 2005

Г

Closure by prefix and limits

Lim is idempotent so that Lim c PCI is limit closed:

$$\operatorname{Lim} \circ \operatorname{PCI}(P) = \operatorname{Lim} \circ \operatorname{Lim} \circ \operatorname{PCI}(P) \tag{4}$$

as well as prefix closed:

$$\operatorname{Lim} \circ \operatorname{PCI}(P) = \operatorname{PCI} \circ \operatorname{Lim} \circ \operatorname{PCI}(P) \tag{5}$$

PROOF. – Lim \circ PCI(P) \subseteq PCI \circ Lim \circ PCI(P) since PCI is a closure operator hence extensive;

- The inverse $PCI \circ Lim \circ PCI(P) \subseteq Lim \circ PCI(P)$ follows from the remark that limits of prefix-closed sets cannot introduce new prefixes.

Course 16,395: "Abstract interpretation", Thuesday April 5th, 2005

— 60 F. Couset, 2009

Definition of Safety

 $-S \subseteq \Sigma^{\vec{\infty}}$ is a *safety* property if and only if [3]:

$$\mathsf{Safe}(S) = S^3$$

where:

$$\mathsf{Safe} \stackrel{\mathsf{def}}{=} \mathsf{Lim} \circ \mathsf{PCI} \tag{6}$$

Reference

[3] B. Alpem & F.B. Schneider. Defining Liveness. Information Processing Letters 21 (1986) 181–185.

Course 16,393: "Abstract interpretation", Thuesday April 9th, 2009

© F. Couset, 2005

Characterization of safety properties

Safety properties S can be disproved by looking only at some finite partial program behavior:

$$orall \sigma \in \varSigma^{ec{\infty}} : (\sigma
ot \in S) \iff (\exists i \geq 1 : \sigma \swarrow i
ot \in S)$$

PROOF. Lim : PCI(S) = S

 \iff Lim \circ PCI $(S) \subseteq S$

 $\iff \{\sigma \in \varSigma^{\infty} \mid \forall i \geq 1 : \sigma \swarrow i \in \mathsf{PCI}(S)\} \subseteq S$

 $\iff \{\sigma \in \varSigma^{\operatorname{ct}} \mid \forall i \geq 1 : \exists \beta \in \varSigma^{\operatorname{ct}} : \sigma \diagup i \bullet \beta \in S\} \subseteq S$

 $\iff \forall \sigma \in \Sigma^{\infty} : (\forall i \geq 1 : \exists \beta \in \Sigma^{\alpha} : \sigma / i \cdot \beta \in S) \Longrightarrow (\sigma \in S)$

 $\iff \forall \sigma \in \varSigma^{\operatorname{oc}} : (\sigma \not \in S) \Longrightarrow (\exists i \geq 1 : \forall \beta \in \varSigma^{\times} : \sigma \swarrow i \bullet \beta \not \in S)$

Course 16,395: "Abstract interpretation", Thuesday April 9th, 2005

@ **F. Causat**, 2005

³ Otherwise stated S is closed in the topology induced by the topological closure operator Lim • FO which fropoints are the closed sets.

$$\iff \forall \sigma \in \varSigma^{\infty} : (\sigma \not\in S) \iff (\exists i \geq 1 : \forall \beta \in \varSigma^{\alpha} : \sigma \swarrow i \bullet \beta \not\in S)$$
 since if $\exists i \geq 1 : \forall \beta \in \varSigma^{\alpha} : \sigma \swarrow i \bullet \beta \not\in S$ then in particular for $\beta = \sigma \nearrow n$, we have $\sigma = \sigma \swarrow i \bullet \sigma \nearrow n \not\in S$.

$$\iff \forall \sigma \in \Sigma^{\operatorname{sc}} : (\sigma \not\in S) \iff (\exists i \ge 1 : \sigma \swarrow i \not\in S)^4$$
$$\text{since } \forall \beta \in \Sigma^{\operatorname{sc}} : \sigma \swarrow i \bullet \beta \not\in S \iff \sigma \swarrow i \not\in S$$

- \Rightarrow choose $\beta = \vec{\epsilon}$
- $\Leftarrow S \text{ is a safety property so PCI}(S) = S \text{ hence } (\sigma \swarrow i \bullet \beta \in S) \Longrightarrow (\sigma \swarrow i \in S) \text{ so } (\sigma \swarrow i \notin S) \Longrightarrow (\sigma \swarrow i \bullet \beta \notin S).$

Course 16,393: "Abstract interpretation", Thuesday April 9th, 2009

© F. Couset, 2005

– By Ward theorem, $\langle \text{Safe}(\Sigma^{\circ c}),, \sqsubseteq, \text{Safe}(\emptyset), \Sigma^{\circ c}, \lambda S \cdot \text{Safe}(\cup S), \cap \rangle$ is a complete lattice with $\text{Safe}(\emptyset) = \emptyset$ and $\text{Safe}(\bigcup_i S_i)$

$$=$$
 Lim \circ PCI $(\bigcup_i S_i)$

$$= \operatorname{Lim}(\bigcup_i \operatorname{PCI}(S_i))$$

by (1)

Г

$$= \operatorname{Lim}(\bigcup_i \operatorname{PCI} \circ \operatorname{Lim} \circ \operatorname{PCI} S_i)$$

since
$$S_i\in \mathsf{Safe}(\wp(\varSigma^{\circ\!\mathsf{c}}))$$
 so Lim \circ PCI $S_i=S_i$

$$= \operatorname{Lim}(\bigcup_{i} \operatorname{Lim} \circ \operatorname{PCl}S_{i})$$
 by (5)

$$= \operatorname{Lim}(\bigcup_i S_i) ext{ since } S_i \in \operatorname{Safe}(\wp(\Sigma^{\operatorname{cc}})).$$

The complete lattice of safety properties

- Safe(P) is the least safety property including $P \subseteq \Sigma^{\vec{\infty}}$; (7)
- $-\langle Safe(\wp(\Sigma^{\vec{\infty}}))^{\epsilon}, \subseteq, \emptyset, \Sigma^{\vec{\infty}}, \lambda S \cdot Lim(\cup S), \cap \rangle$ is a complete lattice;
- Safe is a topological closure operator (2) but not a complete join morphism.

PROOF. – By (6) and (3), Safe is an upper-closure operator so that Safe(P) is the least soundness property including $P \subseteq \Sigma^{\text{oc}}$ since $P \subseteq Y = \text{Safe}(Y)$ implies Safe(P) \subseteq Safe(Y) = Y;

Scfe(X) $\stackrel{\text{i.i.f.}}{=}$ {Scfe(x) | $x \in X$ }.

Course 16,393: "Abstract interpretation", Threeday April 5th, 2005

- 60 F. Couset, 2009

Bibliography

- B.A. Davey & H.A. Priestley
 "Introduction to lattices and order"
 Cambridge University Press, 2nd edition, 2002, 298 p.
- G. Birkhoff
 "Lattice theory"
 American mathematical Society, Colloquium Publications, Vol. 25, 3rd edition, 1979, 418 p.
- G. Grätzer
 "General Lattice Theory"
 Birkhüser verlag, Basel, 2nd edition, 1998, 663 p.

⁴ This corresponds to the usual explanation of safety: if a "bad thing" does occur (i.e. \(\sigma \neq S\)) then this can be recognized in finite time. Otherwise stated, there is a finite observation where correcting undesired happened which is irremediable, because it cannot be fixed in the future no matter how it is extended.

⁻ To show that Safe is not a complete join morphism, consider $X_n = \{a\}^n$. We have $\bigcup_{n \in \mathbb{N}}$. Safe $(X_n) = \bigcup_{n \in \mathbb{N}} X_n = \{a\}^n$ whereas Safe $(\bigcup_{n \in \mathbb{N}} X_n) = \text{Safe}(\{a\}^n) = \{a\}^\infty$.

- Laurent Mauborgne "Abstract Interpretation Using Typed I Science of Computer Programming, 31(1):91–112, may 1998.

THE END

My MIT web site is http://www.mit.edu/~ccusct/

The course web site is http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/.

Course 16.393: "Abstract interpretation", Threesday April 5th, 2005

- 42 —

© F. Couset, 2005

Course 16.399: "Abstract interpretation", Thuesday April 9th, 2009

- 41 —

(c) F. Couset, 2005