Abstract Interpretation

Jan Midtgaard

Winter School, Day 1

http://janmidtgaard.dk/aiws15/

Saint Petersburg, Russia, 2015

What is this course about?

Crudely simplified the history of program analysis (or static analysis) can be split in two:

- an American school of program analysis
- a French school of program analysis

The former school has its roots in *data-flow analysis* and has given rise to many important results, e.g., within optimizing compilers.

Some of you may be familiar with data-flow analysis if you've taken a compiler course.

This course is concerned with the alternative, French approach.

What is abstract interpretation?

- It is a theory of semantics-based program analysis
- It was initially conceived in the late 1970's by Patrick and Radhia Cousot
- It has been refined over the last 40 years
 - to new applications
 - to new kinds of semantics
 - to new programming paradigms
 - by new abstract domains
 - **–** ...

Which is the right approach?

None of them is right or wrong — it is simply an alternative view — an eye opener to a new world.

Why? To develop new techniques, to explain existing ones, to extend or strengthen them, to formalize them.

By Friday afternoon, you will be in a position to make an informed opinion.

It is not just an academic theory: it has been used to check/verify flight control software for both Airbus and Mars missions. By the end of this course, we will read papers about those.

It'll get hairy: there will be mathematics and semantics

You take the red pill...

You take the red pill...

"... you stay in Wonderland and I show you how deep the rabbit-hole goes..."

Learning outcomes and competences

On Friday afternoon, the participants should be able to:

- describe and explain basic analyses in terms of classical abstract interpretation.
- apply and reason about Galois connections.
- implement abstract interpreters on the basis of the derived program analyses.

In some sense: thinking tools

Like *O-analysis* is a tool for reasoning about execution time (and space), *abstract interpretation* is a tool for reasoning about analyses and properties.

Pedagogical choices / Contract

Lectures – typically mornings, sometimes with a few exercises in class

Reading – study research papers and slides (@home)

Exercises – typically afternoons, both mathematics and programming. Over the week they build up a

Project – a chance for you to apply your newly acquired skills – feel free to go crazy...

I'm assuming you all know about lexing, parsing, context-free grammars, abstract syntax trees (ASTs) and syntax-directed definitions/translations as taught in an undergraduate compiler course.

How many of you have taken

a compiler course,

I'm assuming you all know about lexing, parsing, context-free grammars, abstract syntax trees (ASTs) and syntax-directed definitions/translations as taught in an undergraduate compiler course.

How many of you have taken

- a compiler course,
- a functional programming course,

I'm assuming you all know about lexing, parsing, context-free grammars, abstract syntax trees (ASTs) and syntax-directed definitions/translations as taught in an undergraduate compiler course.

How many of you have taken

- □ a compiler course,
- a functional programming course,
- a formal semantics course?

I'm assuming you all know about lexing, parsing, context-free grammars, abstract syntax trees (ASTs) and syntax-directed definitions/translations as taught in an undergraduate compiler course.

How many of you have taken

- a compiler course,
- a functional programming course,
- a formal semantics course?

How many of you are

students? BSc,MSc,PhD?

I'm assuming you all know about lexing, parsing, context-free grammars, abstract syntax trees (ASTs) and syntax-directed definitions/translations as taught in an undergraduate compiler course.

How many of you have taken

- a compiler course,
- a functional programming course,
- a formal semantics course?

How many of you are

- students? BSc,MSc,PhD?
- developers? @JetBrains?

My background

Researcher in programming languages (abstract interpretation, semantics, functional programming)

PhD in Computer Science, Aarhus University (2007). Since then:

- INRIA Rennes,
- Roskilde University,
- Aarhus University,
- Technical University of Denmark

I developed and ran this course in Aarhus 2010–2012

Fred Mesnard has since used it at Université de la Reunion in France

Outline

- What and how of the winter school
- Transition systems
- Math: Posets, CPOs, complete lattices, Galois connections, fixed points
- Abstract interpretation basics
- □ OCaml intro

Transition systems

Transition systems

Definition. A transition system is a triple (quadruple)

 $\langle S, S_i, S_f, \rightarrow \rangle$ where

- $\ \square$ S is a set of states
- \Box $S_i \subseteq S$ is a set of initial states
- $\square S_f \subseteq S \text{ is an optional set of final states}$ $(\forall s \in S_f, s' \in S : s \not\rightarrow s')$
- $\neg \rightarrow \subseteq S \times S$ is a transition relation relating a state to its (possible) successors

Given two numbers $x, y \in \mathbb{N}$ we can describe Euclid's GCD algorithm as a transition system:

$$S = \mathbb{N} \times \mathbb{N}$$

$$S_i = \{\langle x, y \rangle\}$$

$$S_f = \{\langle n, n \rangle \mid n \in \mathbb{N}\}$$

$$\to : \langle n, m \rangle \to \langle n - m, m \rangle \quad \text{if } n > m$$

$$\langle n, m \rangle \to \langle n, m - n \rangle \quad \text{if } n < m$$

where we have written the transition relation using *infix* notation.

$$\rightarrow = \{ (\langle n, m \rangle, \langle n - m, m \rangle) \mid n > m \}$$
$$\cup \{ (\langle n, m \rangle, \langle n, m - n \rangle) \mid n < m \}$$

Given two numbers $x, y \in \mathbb{N}$ we can describe Euclid's GCD algorithm as a transition system:

$$S = \mathbb{N} \times \mathbb{N}$$
 $S_i = \{\langle x, y \rangle\} \leftarrow \text{this is an "input-specific trans.sys."}$
 $S_f = \{\langle n, n \rangle \mid n \in \mathbb{N}\}$
 $\rightarrow : \langle n, m \rangle \rightarrow \langle n - m, m \rangle \qquad \text{if } n > m$
 $\langle n, m \rangle \rightarrow \langle n, m - n \rangle \qquad \text{if } n < m$

where we have written the transition relation using *infix* notation.

$$\rightarrow = \{ (\langle n, m \rangle, \langle n - m, m \rangle) \mid n > m \}$$
$$\cup \{ (\langle n, m \rangle, \langle n, m - n \rangle) \mid n < m \}$$

Given two numbers $x, y \in \mathbb{N}$ we can describe Euclid's GCD algorithm as a transition system:

$$S = \mathbb{N} \times \mathbb{N}$$

$$S_i = S$$

$$S_f = \{ \langle n, n \rangle \mid n \in \mathbb{N} \}$$

$$\to : \langle n, m \rangle \to \langle n - m, m \rangle \qquad \text{if } n > m$$

$$\langle n, m \rangle \to \langle n, m - n \rangle \qquad \text{if } n < m$$

where we have written the transition relation using *infix* notation.

$$\rightarrow = \{ (\langle n, m \rangle, \langle n - m, m \rangle) \mid n > m \}$$
$$\cup \{ (\langle n, m \rangle, \langle n, m - n \rangle) \mid n < m \}$$

Given two numbers $x, y \in \mathbb{N}$ we can describe Euclid's GCD algorithm as a transition system:

$$S = \mathbb{N} \times \mathbb{N}$$
 $S_i = S \leftarrow \text{whereas this describes all possible inputs}$
 $S_f = \{\langle n, n \rangle \mid n \in \mathbb{N} \}$
 $\rightarrow : \langle n, m \rangle \rightarrow \langle n - m, m \rangle \qquad \text{if } n > m$
 $\langle n, m \rangle \rightarrow \langle n, m - n \rangle \qquad \text{if } n < m$

where we have written the transition relation using *infix* notation.

$$\rightarrow = \{ (\langle n, m \rangle, \langle n - m, m \rangle) \mid n > m \}$$
$$\cup \{ (\langle n, m \rangle, \langle n, m - n \rangle) \mid n < m \}$$

Example 2: Modeling a program

Modeling the program

```
x := 0;
while (x < 100) {
    x := x + 1;
}</pre>
```

as a transition system:

$$S = \mathbb{Z}$$

 $S_i = \{0\}$
 $\to = \{(x, x') \mid x < 100 \land x' = x + 1\}$

How to get from a program to a transition system is the topic of the next lecture.

For now we assume that we can model the semantics (the meaning) of a program as a transition system.

Mathematical foundations

Partially ordered sets

Definition. A partially ordered set (poset) $\langle S; \sqsubseteq \rangle$ is a set S equipped with a binary relation $\sqsubseteq \subseteq S \times S$ with the following properties:

- \square Reflexive: $\forall a \in S : a \sqsubseteq a$
- \Box Antisymmetric: $\forall a,b \in S: a \sqsubseteq b \land b \sqsubseteq a \implies a = b$
- \square *Transitive:* $\forall a,b,c \in S: a \sqsubseteq b \land b \sqsubseteq c \implies a \sqsubseteq c$

Example 1: $\langle \mathbb{N}; \leq \rangle$ is a poset

Example 2: $\langle \wp(S); \subseteq \rangle$ is a poset

Note: $\wp(S)$ is sometimes written 2^S

Example 3: If $\langle P; \sqsubseteq \rangle$ is a poset, then $\langle P; \supseteq \rangle$ is a poset

Upper and lower bounds

Let $\langle P; \sqsubseteq \rangle$ be a partially ordered set.

Definition. $u \in P$ *is an* upper bound *of* $S \subseteq P$ *iff* $\forall s \in S : s \sqsubseteq u$

Definition. $l \in P$ *is an* lower bound *of* $S \subseteq P$ *iff* $\forall s \in S : l \sqsubseteq s$

Definition. $u \in P$ is a least upper bound (lub) of $S \subseteq P$ iff it is an upper bound of S and it is less than all other upper bounds: $\forall u' \in P : (\forall s \in S : s \sqsubseteq u') \implies u \sqsubseteq u'$

Definition. $l \in P$ is a greatest lower bound (glb) of $S \subseteq P$ iff it is an lower bound of S and it is greater than all other lower bounds:

$$\forall l' \in P : (\forall s \in S : l' \sqsubseteq s) \implies l' \sqsubseteq l$$

Complete Partial Orders (CPOs)

Definition. A complete partial order is a poset such that all increasing chains c_i , $i \in \mathbb{N}$ ($\forall i \in \mathbb{N} : c_i \sqsubseteq c_{i+1}$) have a least upper bound:

$$\bigsqcup_{i\in\mathbb{N}}c_i$$

Non-example: $\langle \mathbb{N}; \leq \rangle$ is *not* a CPO. Why?

Example: $\langle \wp(S); \subseteq \rangle$ is a CPO.

Complete lattices

Definition. A complete lattice is a poset $\langle C; \sqsubseteq, \bot, \top, \sqcup, \sqcap \rangle$ such that

- \Box the least upper bound $\Box S$ ('join') and
- \square the greatest lower bound $\square S$ ('meet') exists for every subset S of C.
- $\Box \quad \bot = \sqcap C$ ('bottom') denotes the infimum of C and
- $\lnot \quad \top = \sqcup C$ ('top') denotes the supremum of C .

Example 1: $\langle \wp(S); \subseteq, \emptyset, S, \cup, \cap \rangle$ is a complete lattice.

Example 2: The integers (extended with $-\infty$ and $+\infty$) is a complete lattice

$$\langle \mathbb{Z} \cup \{-\infty, +\infty\}; \leq, -\infty, +\infty, \max, \min \rangle.$$

Example: A complete lattice of functions

Theorem. The set of total functions $D \to C$, whose codomain is a complete lattice $\langle C; \sqsubseteq, \bot, \top, \sqcup, \sqcap \rangle$, is itself a complete lattice $\langle D \to C; \dot{\sqsubseteq}, \dot{\bot}, \dot{\top}, \dot{\sqcup}, \dot{\sqcap} \rangle$ under the pointwise ordering $f \dot{\sqsubseteq} f' \iff \forall x. f(x) \sqsubseteq f'(x)$, and with

$$\Box$$
 $\dot{\perp} = \lambda x. \perp$

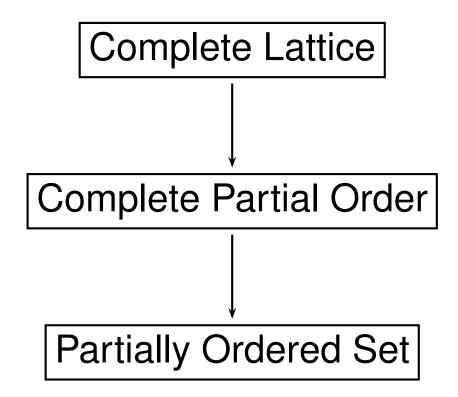
$$\Box$$
 $\dot{\top} = \lambda x. \top$

$$\Box \quad f \dot{\sqcup} g = \lambda x. f(x) \sqcup g(x)$$

$$\Box \quad f \dot{\sqcap} g = \lambda x. f(x) \sqcap g(x)$$

Here $\lambda x \dots$ is a mathematical function with argument x.

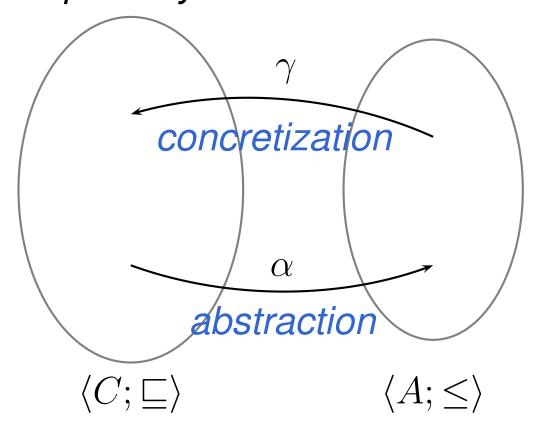
A quick comparison



Galois connections

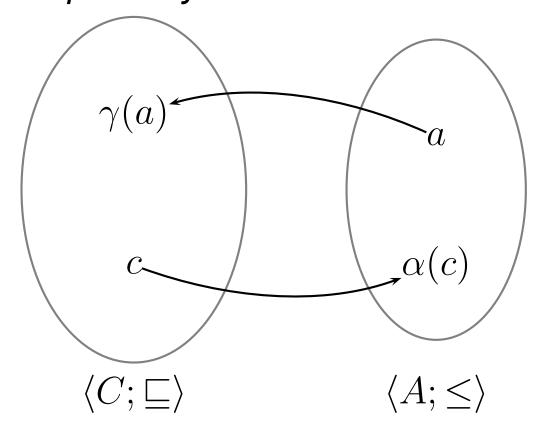
Galois connections

Definition. A Galois connection is a pair of functions α , γ between two partially ordered sets:



Galois connections

Definition. A Galois connection is a pair of functions α , γ between two partially ordered sets:



such that: $\forall a \in A, c \in C : \alpha(c) \leq a \iff c \sqsubseteq \gamma(a)$

Galois connections: A familiar example

You already know the pattern of moving from one side of an inequation to another from high school:

$$\forall x, y, z \in \mathbb{Z} : x+z \leq y \iff x \leq y-z$$

which we can write with α and γ as:

$$\forall x,y,z\in\mathbb{Z}\ :\ \alpha(x)\leq y\iff x\leq \gamma(y)$$
 where $\alpha(n)=n+z$
$$\gamma(n)=n-z$$

Galois connections: An equivalent definition

Definition. A Galois connection is a pair of functions α and γ satisfying

- (a) α and γ are monotone (read: order-preserving) (for all $c, c' \in C : c \sqsubseteq c' \implies \alpha(c) \leq \alpha(c')$ and for all $a, a' \in A : a \leq a' \implies \gamma(a) \sqsubseteq \gamma(a')$),
- (b) $\alpha \circ \gamma$ is reductive (for all $a \in A : \alpha \circ \gamma(a) \leq a$),
- (c) $\gamma \circ \alpha$ is extensive (for all $c \in C : c \sqsubseteq \gamma \circ \alpha(c)$).

Galois connections are typeset as $\langle C; \sqsubseteq \rangle \xrightarrow{\gamma} \langle A; \leq \rangle$.

Galois connection properties (1/3)

Theorem. For a Galois connection between two complete lattices $\langle C; \sqsubseteq, \bot_c, \top_c, \sqcup, \sqcap \rangle$ and $\langle A; \leq, \bot_a, \top_a, \vee, \wedge \rangle$, α is a complete join-morphism (CJM):

for all
$$S_c \subseteq C : \alpha(\sqcup S_c) = \vee \alpha(S_c) = \vee \{\alpha(c) \mid c \in S_c\}$$

and γ is a complete meet morphism (CMM):

for all
$$S_a \subseteq A : \gamma(\land S_a) = \sqcap \gamma(S_a) = \sqcap \{\gamma(a) \mid a \in S_a\}$$

Again: we can view these as algebraic rewriting rules.

Galois connection properties (2/3)

Theorem. The composition of two Galois connections $\langle C; \sqsubseteq \rangle \stackrel{\gamma_1}{\Longleftrightarrow} \langle B; \subseteq \rangle$ and $\langle B; \subseteq \rangle \stackrel{\gamma_2}{\Longleftrightarrow} \langle A; \leq \rangle$ is itself a Galois connection:

$$\langle C; \sqsubseteq \rangle \xrightarrow{\gamma_1 \circ \gamma_2} \langle A; \leq \rangle$$

We can typeset this theorem as an inference rule:

$$\frac{\langle C; \sqsubseteq \rangle \stackrel{\gamma_1}{\longleftrightarrow} \langle B; \subseteq \rangle}{\langle C; \sqsubseteq \rangle \stackrel{\gamma_1 \circ \gamma_2}{\longleftrightarrow} \langle A; \leq \rangle} \langle A; \leq \rangle$$

$$\langle C; \sqsubseteq \rangle \stackrel{\gamma_1 \circ \gamma_2}{\longleftrightarrow} \langle A; \leq \rangle$$

Hence Galois connections stack up like Lego bricks!

Galois connection properties (3/3)

Galois connections in which α is surjective / onto (or equivalently γ is injective) are typeset as:

$$\langle C; \sqsubseteq \rangle \xrightarrow{\gamma} \langle A; \leq \rangle$$

and sometimes called Galois surjections (or insertions)

Galois connections in which α is injective / one-to-one (or equivalently γ is surjective) are typeset as:

$$\langle C; \sqsubseteq \rangle \xrightarrow{\varphi} \langle A; \leq \rangle$$

and sometimes called Galois injections

When both α and γ are surjective, the two domains are isomorphic, typeset as $\langle C; \sqsubseteq \rangle \xrightarrow{\varphi} \langle A; \leq \rangle$

Example: The Parity abstract domain

Galois connections capture *property extraction* which is essential for static analysis. Consider an abstraction into a Parity domain:

$$\langle \wp(\mathbb{N}_0); \subseteq \rangle \xrightarrow{\gamma} \langle Par; \sqsubseteq \rangle$$
 $Par: odd \underbrace{\hspace{1cm}}_{} even$

(The above *Hasse diagram* defines the Parity ordering $\bot \sqsubseteq odd \sqsubseteq \top$ and $\bot \sqsubseteq even \sqsubseteq \top$)

The abstraction and concretization functions are:

$$\begin{split} \gamma(\bot) &= \emptyset \\ \gamma(odd) &= \{n \in \mathbb{N}_0 \mid n \bmod 2 = 1\} \\ \gamma(even) &= \{n \in \mathbb{N}_0 \mid n \bmod 2 = 0\} \\ \gamma(\top) &= \mathbb{N}_0 \end{split} \qquad \ \alpha(N) = \begin{cases} \bot & \text{if } N = \emptyset \\ odd & \text{if } \forall n \in N: n \bmod 2 = 1 \\ even & \text{if } \forall n \in N: n \bmod 2 = 0 \\ \top & \text{otherwise} \end{cases}$$

Example: an isomorphism

Since Galois connections is a generalization of isomorphisms, they also fit nicely into the theory.

For example, we can represent a set of pairs as a function that maps a first component to its second components:

$$\langle \wp(A \times B); \subseteq \rangle \xrightarrow{\varphi} \langle A \to \wp(B); \dot{\subseteq} \rangle$$

where
$$\alpha(R) = \lambda a.\{b \mid (a,b) \in R\}$$

 $\gamma(F) = \{(a,b) \mid b \in F(a)\}$

Fixed points

Fixed points, briefly

Definition. a fixed point of a function f, is a point x such that f(x) = x

Assume $f: P \to P$ operates over a poset $\langle P; \sqsubseteq \rangle$

Definition. *a* pre-fixed point *is a point* x *such that* $x \sqsubseteq f(x)$

Definition. *a* post-fixed point *is a point* x *such that* $f(x) \sqsubseteq x$

Definition. *a* least fixed point (lfp) *is a fixed point* l *such that for all other fixed points* $l':(f(l')=l') \implies l \sqsubseteq l'$

Definition. a greatest fixed point (gfp) is a fixed point l such that for all other fixed points

 $l': (f(l') = l') \implies l' \sqsubseteq l$

Tarski's fixed point theorem

Theorem. If L is a complete lattice and $f: L \to L$ is a monotone function, f's fixed points themselves form a complete lattice.

Hence Tarski tells us that there exists a least fixed point (and a greatest fixed point).

Abstract interpretation basics

Abstract interpretation basics

Canonical abstract interpretation approximates the collecting semantics of a transition system.

A standard example of a collecting semantics is the *reachable states* from a given set of initial states S_i . Given a transition function F defined as:

$$F(\Sigma) = S_i \cup \{ \sigma \mid \exists \sigma' \in \Sigma : \sigma' \to \sigma \}$$

we can express the reachable states of F as the least fixed point $\operatorname{lfp} F$ of F.

For a fixed point $F(\Sigma) = \Sigma$ of F:

$$S_i \subseteq \Sigma \land \forall \sigma' \in \Sigma : \sigma' \to \sigma \implies \sigma \in \Sigma$$

which expresses the transitive closure of the states reachable from S_i .

Abstract interpretation basics

Canonical abstract interpretation approximates the collecting semantics of a transition system.

A standard example of a collecting semantics is the *reachable states* from a given set of initial states S_i . Given a transition function F defined as:

$$F(\Sigma) = S_i \cup \{ \sigma \mid \exists \sigma' \in \Sigma : \sigma' \to \sigma \}$$

we can express the reachable states of F as the least fixed point $\operatorname{lfp} F$ of F.

We can obtain lfp F by Kleene iteration¹:

$$\emptyset, F(\emptyset), F^2(\emptyset), F^3(\emptyset), \dots$$

¹In general we can only obtain lfp f this way if f is continuous $f(\Box S) = \Box f(\mathring{S}^5)^{-61}$

Program statement

State (on entry)

 $\left\{\right\}$

{}

Program statement

Program statement

$$x := 1;$$
 {0}
while (x < 100) { {1}
 x := x + 1; {}
}

Program statement

$$x := 1;$$
 {0}
while (x < 100) { {1}
 x := x + 1; {1}
}

Program statement

$$x := 1;$$
 {0}
while (x < 100) { {1,2}
 x := x + 1; {1}
}

Program statement

$$x := 1;$$
 {0}
while (x < 100) { {1,2}
 x := x + 1; {1,2}

Program statement

x := 1;

while
$$(x < 100)$$
 {

$$x := x + 1;$$

}

State (on entry)

$$\{1, 2, 3\}$$

$$\{1, 2\}$$

 $\{\}$

Program statement

while
$$(x < 100)$$
 {

$$x := x + 1;$$

}

State (on entry)

$$\{1, 2, 3\}$$

$$\{1, 2, 3\}$$

 $\{\}$

Program statement

State (on entry)

Jumping forward in time...

Program statement

State (on entry)

Jumping forward in time...

Program statement

x := 1; while (x < 100) { x := x + 1; }</pre>

Program statement

x := 1; while (x < 100) { x := x + 1; }</pre>

$$\{0\}$$
 $\{1, 2, 3, \dots, 98, 99, 100\}$
 $\{1, 2, 3, \dots, 98, 99\}$
 $\{100\}$

Program statement

$$x := 1;$$
while $(x < 100)$ {
 $x := x + 1;$

State (on entry)

$$\{0\}$$
 $\{1, 2, 3, \dots, 98, 99, 100\}$
 $\{1, 2, 3, \dots, 98, 99\}$
 $\{100\}$

Fixed point

The strength of the collecting semantics

- The collecting semantics is ideal, i.e., it is the most precise analysis.
- Unfortunately it is in general uncomputable: an implementation is not guaranteed to terminate
- We therefore approximate the collecting semantics, by computing a fixed point over an alternative and perhaps simpler domain: an abstract interpretation

Abstraction and analysis using Galois connections

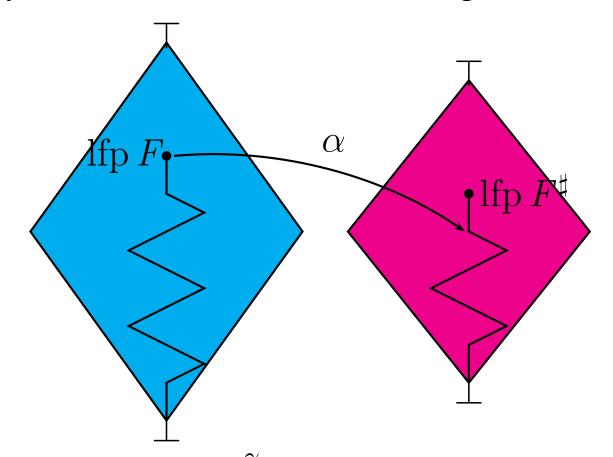
Abstractions are represented as Galois connections which connect complete lattices through α and γ .

We can derive an analysis systematically by composing the transition function with these functions: $\alpha \circ F \circ \gamma$ and gradually refine the collecting semantics into a computable analysis function by mere calculation.

Hence instead of *inventing* a static analysis, we arrive at one by a *structured abstraction* of the set of states $\wp(S)$.

Galois connection-based analysis

By the *fixed point transfer theorem* we can compute a sound approximation of the collecting semantics:



Theorem. Let $\langle C; \sqsubseteq \rangle \stackrel{\gamma}{\longleftrightarrow} \langle A; \leq \rangle$ be a Galois connection between complete lattices. If F and F^{\sharp} are monotone and $\alpha \circ F \circ \gamma \stackrel{.}{\le} F^{\sharp}$ then $\alpha(\operatorname{lfp} F) \leq \operatorname{lfp} F^{\sharp}$

Program statement

Approx. state (on entry)

$$ITTE (X < IOO) {$$

$$x := x + 1;$$

$$\perp$$

$$\perp$$

$$\perp$$

Program statement

x := 1; while (x < 100) { x := x + 1;</pre>

Approx. state (on entry)

even

 \perp

Program statement

```
x := 1;
while (x < 100) {
   x := x + 1;
}</pre>
```

Approx. state (on entry)

even

odd

 \perp

 \perp

Program statement

x := 1; while (x < 100) { x := x + 1; }</pre>

Approx. state (on entry)

even

odd

odd

odd

Program statement

```
x := 1;
while (x < 100) {
   x := x + 1;
}</pre>
```

Approx. state (on entry)

even

T

odd

odd

Program statement

x := 1; while (x < 100) { x := x + 1;</pre>

Approx. state (on entry)

even

T

T

T

Program statement

Approx. state (on entry)

Fixed point

Program statement

Approx. state (on entry)

Fixed point

The result is sound: it accounts for all possible concrete executions (albeit not very precisely...)

Program statement

Approx. state (on entry)

$$even \supseteq \alpha(\{0\})$$

$$\top \supseteq \alpha(\{1, \dots, 99, 100\})$$

$$\top \supseteq \alpha(\{1, \dots, 99\})$$

$$\top \supseteq \alpha(\{100\})$$

Fixed point

The result is sound: it accounts for all possible concrete executions (albeit not very precisely...)

Program statement

Approx. state (on entry)

$$\gamma(even) \supseteq \{0\}$$

$$\gamma(\top) \supseteq \{1, \dots, 99, 100\}$$

$$\gamma(\top) \supseteq \{1, \dots, 99\}$$

$$\gamma(\top) \supseteq \{100\}$$

Fixed point

The result is sound: it accounts for all possible concrete executions (albeit not very precisely...)

Variations

An alternative approach

Rather than simplifying the abstract domains into finite ones, widening and narrowing permits infinite ones.

A first widening iteration overshoots the least fixed point but still ensures termination.

A second narrowing iteration improves the results of the widening iteration.

Program statement

Program statement

Program statement

$$x := 1;$$
 [0;0]
while (x < 100) { [1;1]
 $x := x + 1;$ \bot

Program statement

Program statement

$$x := 1;$$
 [0;0] while (x < 100) { [1;2] $x := x + 1;$ [1;1]

Program statement

$$[0;0]$$

Program statement

$$x := 1;$$
 [0;0] while (x < 100) { [1;3] $x := x + 1;$ [1;2]

Program statement

$$x := 1;$$
 [0;0]
while (x < 100) { [1;3]
 $x := x + 1;$ [1;3]

Program statement

Approx. state (on entry)

$$x := 1;$$
 [0;0]
while (x < 100) { [1;99]
 $x := x + 1;$ [1;98]

Jumping forward in time...

Program statement

Approx. state (on entry)

$$x := 1;$$
 [0;0]

while (x < 100) { [1;99]

 $x := x + 1;$ [1;99]

Jumping forward in time...

Program statement

Program statement

x := 1;

while
$$(x < 100)$$
 {

$$x := x + 1;$$

}

Program statement

Approx. state (on entry)

$$x := 1;$$
 [0;0]
while (x < 100) { [1;100]
 $x := x + 1;$ [1;99]
}

Fixed point

Program statement

Approx. state (on entry)

```
x := 1; [0;0]

while (x < 100) { [1;100]

x := x + 1; [1;99]

}
```

Fixed point

In general, we're not guaranteed to reach a fixed point in a finite number of steps (read: impl. may not halt)

Widening

We compute instead the limit of the sequence:

$$X_0 = \bot$$
$$X_{i+1} = X_i \nabla F^{\sharp}(X_i)$$

where

¬ denotes the widening operator: an operator with the following properties:

- \Box For all $x, y : x \sqsubseteq (x \lor y) \land y \sqsubseteq (x \lor y)$
- For any increasing chain $Y_0 \sqsubseteq Y_1 \sqsubseteq Y_2 \sqsubseteq \dots$ the alternative chain defined as $Y_0' = Y_0$ and $Y_{i+1}' = Y_i' \nabla Y_{i+1}$ stabilizes after a finite amount of steps.

Program statement

$$x := 1;$$

while $(x < 100)$ {

 $x := x + 1;$

}

Program statement

Program statement

$$x := 1;$$
 [0;0] while (x < 100) { [1;1] $x := x + 1;$ \bot

Program statement

$$x := 1;$$
 [0;0]
while (x < 100) { [1;1]
 $x := x + 1;$ [1;1]

Program statement

x := 1; while (x < 100) { x := x + 1;</pre>

$$[0; 0]$$

$$[1; 1] \nabla [1; 2] = [1; +\infty]$$

$$[1; 1]$$

Program statement

x := 1; while (x < 100) { x := x + 1; }</pre>

$$[1;1] \nabla [1;2] = [1;+\infty]$$

$$[100; +\infty]$$

Program statement

$$[1; +\infty] \nabla [1; 100] = [1; +\infty]$$

$$[100; +\infty]$$

Program statement

Stabilized

Approx. state (on entry)

$$[0; 0]$$
 $[1; +\infty] \nabla [1; 100] = [1; +\infty]$
 $[1; 99]$

 $[100; +\infty]$

Program statement

tatement Approx. state (on entry)

$$[0;0] \supseteq [0;0]$$

$$[1; +\infty] \supseteq [1; 100]$$

$$[1;99] \supseteq [1;99]$$

$$[100; +\infty] \supseteq [100; 100]$$

Stabilized (but we overshot the fixed point)

Thanks to widening, we stabilize in a finite number of steps (read: we always halt)

Narrowing (improved overshooting)

We can compute the limit of the sequence:

$$X_0 = \lim_i Y_i$$
$$X_{i+1} = X_i \triangle F^{\sharp}(X_i)$$

where \triangle denotes the *narrowing operator*: an operator with the following properties:

- \Box For all $x, y : (x \triangle y) \sqsubseteq x$
- \neg For all $x, y, z : (x \sqsubseteq y \land x \sqsubseteq z) \implies x \sqsubseteq (y \triangle z)$
- For any chain Y_i the alternative chain defined as $Y_0' = Y_0$ and $Y_{i+1}' = Y_i' \triangle Y_{i+1}$ stabilizes after a finite amount of steps.

Program statement

Approx. state (on entry)

$$x := 1;$$
 $[0;0]$ while $(x < 100)$ { $[1;+\infty]$ $x := x + 1;$ $[1;99]$ }

Starting from the overshot fixed point...

Program statement

Approx. state (on entry)

$$\begin{array}{lll} &\text{x := 1;} && & [0;0] \\ &\text{while (x < 100) } &\text{ } & [1;+\infty] \, \Delta[1;100] = [1;100] \\ &\text{x := x + 1;} && [1;99] \\ &\text{} && [100;+\infty] \end{array}$$

Starting from the overshot fixed point...

Program statement

x := 1; while (x < 100) { x := x + 1; }</pre>

$$[1; +\infty] \triangle [1; 100] = [1; 100]$$

Program statement

Approx. state (on entry)

$$[0;0]$$

$$[1; +\infty] \triangle [1; 100] = [1; 100]$$

Stabilized

Program statement

Approx. state (on entry)

Stabilized (and we even found the fixed point!)

Program statement

Approx. state (on entry)

Stabilized (and we even found the fixed point!)

In general, narrowing will stabilize in a finite number of steps on a sound result (may not be the fixed point)

Some words on functional programming and OCaml

Why FP and OCaml?

We'll use a functional programming language to implement these constructs.

Why FP and OCaml?

We'll use a functional programming language to implement these constructs.

Why?

Why FP and OCaml?

We'll use a functional programming language to implement these constructs.

Why?

- \rightarrow It's a good fit for the job
 - Algebraic datatypes and pattern matching are great for this kind of language processing
 - Microsoft's static device driver verifier is written in OCaml
 - ASTREÉ is written in OCaml

You are welcome to use Scala, Haskell, SML, F#, . . . if you prefer.

OCaml is an ML dialect

Hence it

- is expression-based, hence everything has a value
- is strongly typed
- is statically scoped
- has algebraic datatypes, lists, tuples, and pattern matching
- has higher-order functions

In addition it includes some object-oriented extensions (hence the O in OCaml).

Compilers and IDEs

There is both a bytecode compiler (ocamle) and an optimizing native code compiler (ocamlopt) a compiler to JavaScript (js_of_ocaml) IDE-wise, for emacs I recommend tuareg-mode IntelliJ: you tell me! Eclipse people recommend: OCaIDE http://www.algo-prog.info/ocaide/ http://www.cs.jhu.edu/~scott/pl/caml/ocaide.shtml

- VIM: OMLet
- _: please let me know of your findings

OCaml very briefly (1/2)

You bind values to names using let:

```
let a = 42
let b = "a string"
let c = (a,b,"third tuple elem")
let d = ["a"; "string"; "list"]
```

You also use let to declare functions:

```
let double x = x + x
```

Catch 0: function application binds stronger than

addition: Hence f x+1 parses as (f x)+1

Catch 1: recursive functions must be marked 'rec':

OCaml very briefly (2/2)

The let token is also used for local declarations

however without an end to finish the block.

Note how OCaml uses match ... with to discriminate (pattern match) on a value.

Exercise: write in OCaml a function sumlist of type

```
sumlist : int list -> int
```

Catches and Gotchas

Tuples (and pairs) can be written without parens!

Catch 2: Semicolon ';' separates list elements (rather than comma ', '). For example, compare the types of [1,2,3] and [1;2;3]

Catch 3: Algebraic datatypes lets us build new datatypes as sums and products:

However the constructors must be capitalized otherwise it's a parse error!

Catch 4: The evaluation order is unspecified — however the compiler uses right-to-left in practice(!)

OCaml modules

OCaml has a powerful module system with

- signatures (think interface) and
- functors (think module -> module function)

Example:

OCaml modules

OCaml has a powerful module system with

- signatures (think interface) and
- functors (think module -> module function)

Example:

OCaml modules

OCaml has a powerful module system with

- signatures (think interface) and
- functors (think module -> module function)

Example:

Builtin maps are similar:

```
module Mymap = Map.Make(struct ... end)
```

OCaml modules and separate compilation

We can separate the implementation and the interface of a module into two separate files x.ml and x.mli. This is equivalent to

Catch 5: Files are lower-case, but their module names are capitalized. Hence, the module in file set.ml is referred to as Set.

If we write

```
module S = struct let f = ... end in a file foo.ml then we (need to) refer to f as Foo.S.f
```

Relevant links

Tutorial and toplevel in your browser http://try.ocamlpro.com/ A nice OCaml community site with lots of info: http://ocaml.org/ OCaml reference manual http://caml.inria.fr/pub/docs/manual-ocaml/ Standard library documentation http://caml.inria.fr/pub/docs/manual-ocaml/libref/ Jason Hickey's online book http://files.metaprl.org/doc/ocaml-book.pdf Two mailing lists (beginner + main list)

Let's code something!

Let's implement

- a transition system interface,
- an instantiation thereof, and
- the transition function from the reachable states collecting semantics

Summary

Summary

We have covered

- ${\scriptscriptstyle \square}$ The what and the how of the course
- The basics of abstract interpretation (transition systems, reachable states collecting semantics, Galois connections, ...)
- A crash course in OCaml