Abstract Interpretation, Reloaded

Jan Midtgaard

Winter School, Day 3

http://janmidtgaard.dk/aiws15/

Saint Petersburg, Russia, 2015

Yesterday

Semantics overflow:

- The three counter machine
- An abstract machine for CPS terms
- A flow-chart semantics for IMP (non-deterministic!)
- A JVM-like semantics for a bytecode instruction set (objects,classes,methods,fields,...)

Finally we

- had a second look at collecting semantics and
- started massaging the collecting semantics of three counter machine

Today

- Approximation methods for AI (Cousot-Cousot:JLP92)
 - Lattice and fixed point theory
 - fixed points,
 - Galois connections
 - The Galois approach (p.11-...)
- From collecting semantics to static analysis
- More fun with Plotkin's three counter machine

Fixed points, reloaded

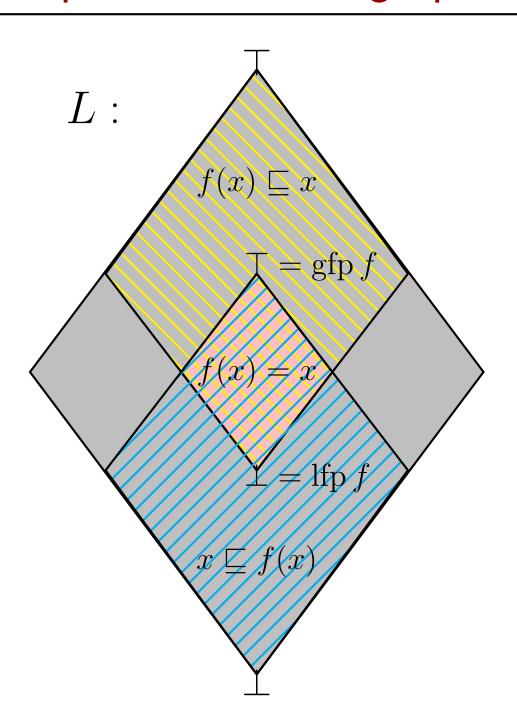
Tarski's fixed-point theorem

Theorem. (Tarski:PJM55) Let L be a complete lattice $\langle L; \sqsubseteq, \bot, \top, \sqcup, \sqcap \rangle$, and let f be a monotone function. Then the set P of all fixed points of f forms a complete lattice $\langle P; \sqsubseteq, \operatorname{lfp} f, \operatorname{gfp} f, \sqcup, \sqcap \rangle$ where

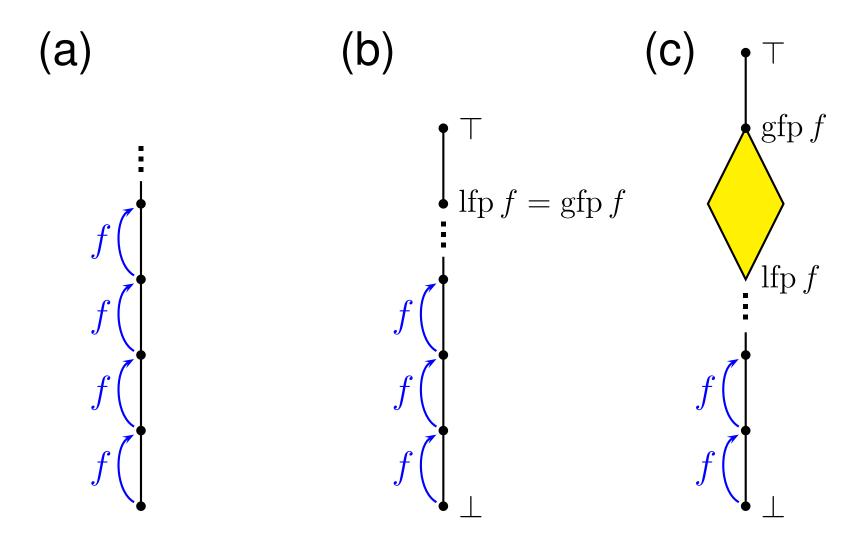
- $\Box P = \{x \in L \mid x = f(x)\}$
- $\Box \quad \text{lfp } f = \prod \{ x \in L \mid f(x) \sqsubseteq x \}$
- $\Box \quad \text{gfp } f = \bigsqcup \{ x \in L \mid x \sqsubseteq f(x) \}$

Note: (1) Ifp f is greatest lower bound of the set of post fixed points of f, and (2) gfp f is least upper bound of the set of pre fixed points of f.

Tarski's fixed point theorem, graphically



Fixed points, intuition



(a) On a poset a monotone function is not guaranteed to have a fixed point, (b) lfp and gfp may coincide, or (c) the fixed points may form a sub-lattice.

7 / 48

Galois connections, reloaded

Galois connection motivation

Partial orders model precision of properties: $a \sqsubseteq a'$ if the properties a and a' are *comparable* and a is *more* precise than a'.

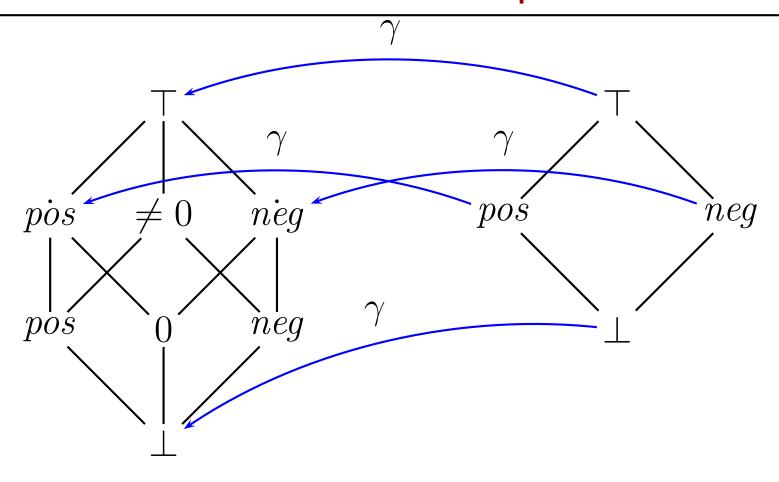
Example. Recall from the Parity domain:

The property even meaning $\{n \in \mathbb{N}_0 \mid n \bmod 2 = 0\}$ is more precise than the property \top meaning \mathbb{N}_0

The meaning of an abstract property is expressed by the concretization function γ .

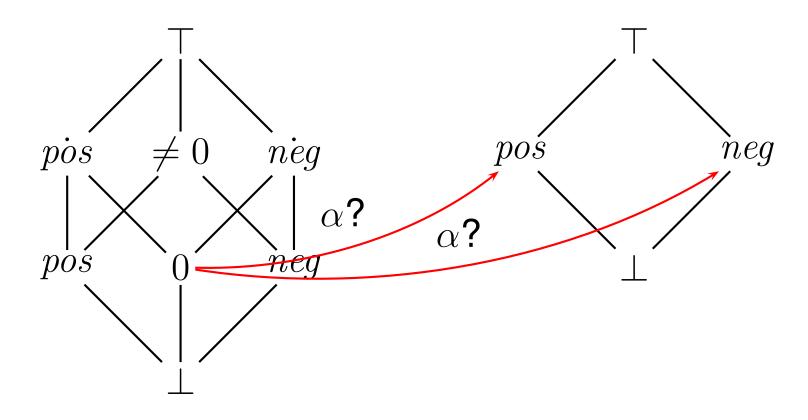
Approximation is captured by the abstraction function α : it maps each concrete property to its *best* abstract counterpart.

Galois connection non-example



 γ assigns meaning to each abstract element.

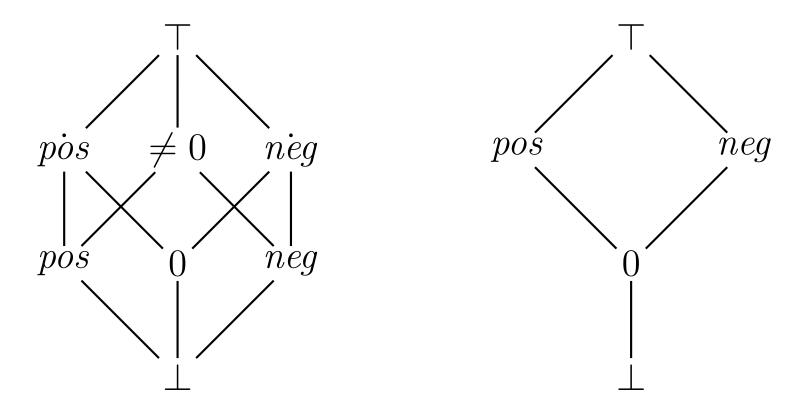
Galois connection non-example



 γ assigns meaning to each abstract element.

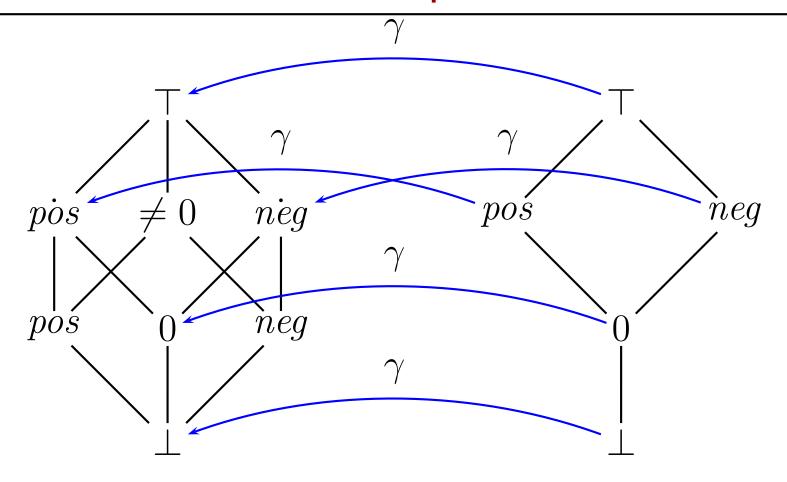
Problem: however there is no best (unique) abstraction for 0!

Galois connection example, fixed



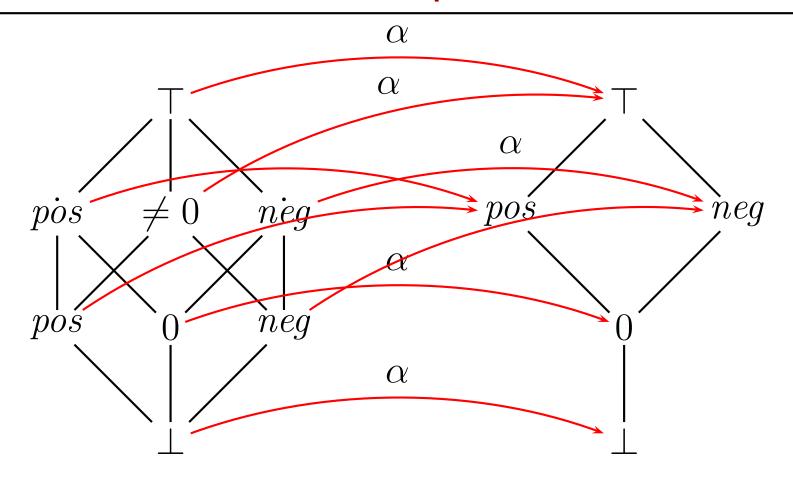
We fix it by adding an element corresponding to 0.

Galois connection example, fixed



 γ assigns meaning to each abstract element. Notice how γ is injective (one-to-one).

Galois connection example, fixed



 α maps each element to its best abstraction.

Notice how α is surjective (onto), hence we have a Galois surjection.

Also notice the information loss.

Two soundness conditions

Condition 1:

If $a \le a'$ for some c where $\alpha(c) = a$, then a' is a sound albeit less precise approximation of c.

Condition 2:

If $c' \sqsubseteq c$ for some a where $\gamma(a) = c$, then a is a sound albeit less precise approximation of c'.

When the two conditions are equivalent:

$$\alpha(c) \le a' \iff c' \sqsubseteq \gamma(a)$$

we have a Galois connection.

Galois connection properties (1/2)

Observation 1: $\gamma \circ \alpha$ is extensive

Intuition: loss of information by α is sound

Observation 2: $\alpha \circ \gamma$ is reductive

Intuition: γ loses no information, i.e., α is as precise as

possible

Observation 3: α and γ are monotone

Intuition: α and γ are order, i.e., soundness preserving

Galois connection properties (2/2)

Theorem. The inverse of a Galois connection is itself a Galois connection (under reverse order):

$$\frac{\langle C; \sqsubseteq \rangle \stackrel{\gamma}{\longleftarrow} \langle A; \leq \rangle}{\langle A; \geq \rangle \stackrel{\alpha}{\longleftarrow} \langle C; \supseteq \rangle}$$

Galois connection properties (2/2)

Theorem. The inverse of a Galois connection is itself a Galois connection (under reverse order):

$$\frac{\langle C; \sqsubseteq \rangle \stackrel{\gamma}{\longleftarrow} \langle A; \leq \rangle}{\langle A; \geq \rangle \stackrel{\alpha}{\longleftarrow} \langle C; \supseteq \rangle}$$

By the *duality principle* all results on posets have a dual. Hence this extends to Galois connections if we replace

- $\Box \quad \sqsubseteq, \sqsubset, \bot, \top, \sqcap, \text{ and } \sqcup \text{ with }$
- \Box \exists , \exists , \top , \bot , \sqcup , and \sqcap

Alternative 1: Closure operators (1/3)

Definition. A function $\rho: S \to S$ on a poset $\langle S; \sqsubseteq \rangle$ is a(nupper) closure operator if ρ is monotone, extensive, and idempotent: $\forall s \in S: \rho(\rho(s)) = \rho(s)$

Similarly ρ is a lower closure operator if it is monotone, reductive, and idempotent.

Corollary. A Galois connection $\langle C; \sqsubseteq \rangle \stackrel{\gamma}{\longleftarrow} \langle A; \leq \rangle$ induces

- $exttt{ iny}$ an upper closure operator $\gamma \circ lpha$ on C and
- \square a lower closure operator $lpha \circ \gamma$ on A

Alternative 1: Closure operators (2/3)

Theorem. A closure operator $\rho: S \to S$ on a poset $\langle S; \sqsubseteq \rangle$ induces a Galois connection

$$\langle S; \sqsubseteq \rangle \xrightarrow{\rho} \langle \rho(S); \sqsubseteq \rangle$$

(1 being the identity function on S).

Hence it is equivalent to stay in the concrete domain and formulate abstract interpretation in terms of closure operators!

Alternative 1: Closure operators (3/3)

 $\rho = \alpha \circ \gamma$ is an example of a(n optimal) *reduction* operator: It normalizes an abstract element to its best abstraction.

Since $\rho = \alpha \circ \gamma$ is a lower closure operator, a static analysis can gain precision by applying it at well-chosen locations (before/after certain operations).

Why? Once we start lifting/composing simpler domains to form more complex ones, the result may contain redundant abstract elements.

Example: $\rho(\lambda pc. \langle even, \perp, odd \rangle) = \lambda pc. \langle \perp, \perp, \perp \rangle$ in the three counter machine.

However it may be too expensive to reduce everywhere, 48

Alternative 2: Moore families

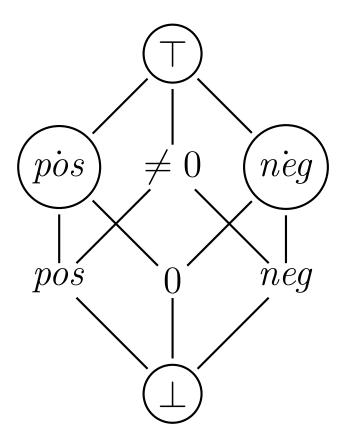
Definition. Let $\langle P; \sqsubseteq \rangle$ be a poset with a top element \top . A Moore family is a subset $S \subseteq P$ such that

- \Box $\top \in S$
- \Box If $X \subseteq S$ then $\Box X$ exists in P and $\Box X \in S$

Proposition. If $\langle C; \sqsubseteq \rangle \stackrel{\gamma}{\longleftarrow} \langle A; \leq \rangle$ is a Galois connection and $\langle C; \sqsubseteq, \bot, \top, \sqcup, \sqcap \rangle$ is a complete lattice, then $\gamma(A) = \{\gamma(a) \mid a \in A\}$ is a Moore family.

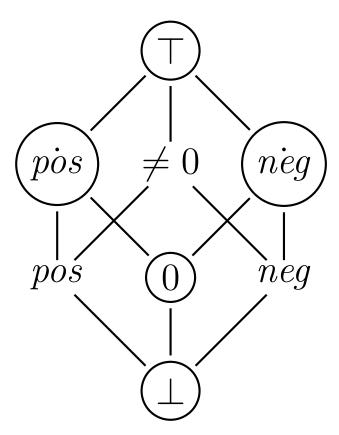
Hence, Moore families can provide a sanity check for an abstract domain.

Alternative 2: Moore family non-example



The greatest lower bound $p\dot{o}s \sqcap n\dot{e}g$ exists, but not in the above subset.

Alternative 2: Moore family example



The greatest lower bound $p\dot{o}s \sqcap n\dot{e}g$ exists, and belongs to the above subset.

More Galois connection properties

Each function uniquely determines the other:

Proposition. If
$$\langle C; \sqsubseteq \rangle \stackrel{\gamma}{\longleftarrow} \langle A; \leq \rangle$$
 and $\langle C; \sqsubseteq \rangle \stackrel{\gamma'}{\longleftarrow} \langle A; \leq \rangle$ then $\alpha = \alpha'$ if and only if $\gamma = \gamma'$

Each function expresses the other:

Proposition. If
$$\langle C; \sqsubseteq \rangle \xrightarrow{\gamma} \langle A; \leq \rangle$$
 then

- \Box for all $c \in C : \alpha(c) = \bigwedge \{a \mid c \sqsubseteq \gamma(a)\}$
- \neg for all $a \in A : \gamma(a) = \bigsqcup \{c \mid \alpha(c) \leq a\}$

Galois surjections and injections reloaded

Definition. A Galois surjection *(or insertion)* $\langle C; \sqsubseteq \rangle \stackrel{\gamma}{ \begin{subarray}{c} \line \l$

Definition. A Galois injection $\langle C; \sqsubseteq \rangle \xrightarrow{\alpha}^{\gamma} \langle A; \leq \rangle$ is a Galois connection in which γ is surjective (equivalently α is injective, or $\forall c \in C : \gamma \circ \alpha(c) = c$).

Proposition. If $\langle C; \sqsubseteq \rangle \stackrel{\gamma}{\longleftarrow} \langle A; \leq \rangle$ is a Galois surjection and C is a complete lattice $\langle C; \sqsubseteq, \bot, \top, \sqcup, \sqcap \rangle$ then A is a complete lattice.

(Intuitively, we inherit least upper (greatest lower) bounds from the Galois connection)

Reduction of an abstract domain

By equating abstract elements with the same concretization, we obtain a Galois surjection:

Proposition. If $\langle C; \sqsubseteq \rangle \stackrel{\gamma}{\longleftrightarrow} \langle A; \leq \rangle$ is a Galois connection, then

- $a \equiv a' = (\gamma(a) = \gamma(a'))$ is an equivalence relation, such that
- $\square \quad \langle C; \sqsubseteq \rangle \xrightarrow{\gamma_{\equiv} \atop \alpha_{\equiv}} \langle A/_{\equiv}; \leq_{\equiv} \rangle \text{ is a Galois surjection,}$

where
$$X \leq_{\equiv} Y$$
 if $(\exists a \in X : \exists a' \in Y : a \leq a')$ $\alpha_{\equiv}(c) = \{a \mid a \equiv \alpha(c)\}$ $\gamma_{\equiv}(X) = \gamma(a)$ where $a \in X$

Example: intervals

Consider the abstract domain of intervals.

Assume that elements are of the form [a; b] where $a \in \mathbb{Z} \cup \{-\infty\}$ and $b \in \mathbb{Z} \cup \{\infty\}$

Ordering: $[a;b] \sqsubseteq [a';b']$ if $a' \leq a \land b \leq b'$

Concretization: $\gamma([a;b]) = \{n \mid a \leq n \leq b\}$

All elements [a;b] for which a>b represent the empty set \emptyset can be eliminated. Usually this reduction has already (implicitly) taken place.

For example, $\emptyset = \gamma([32;0]) = \gamma([5;4]) = \emptyset$

Compositional design of Galois connections

Known composition from day 1

Theorem. The composition of two Galois connections $\langle C; \sqsubseteq \rangle \stackrel{\gamma_1}{\longleftrightarrow} \langle B; \subseteq \rangle$ and $\langle B; \subseteq \rangle \stackrel{\gamma_2}{\longleftrightarrow} \langle A; \leq \rangle$ is itself a Galois connection:

$$\langle C; \sqsubseteq \rangle \xrightarrow{\gamma_1 \circ \gamma_2} \langle A; \leq \rangle$$

The above theorem typeset as an inference rule:

$$\frac{\langle C; \sqsubseteq \rangle \stackrel{\gamma_1}{\longleftarrow} \langle B; \subseteq \rangle}{\langle C; \sqsubseteq \rangle \stackrel{\gamma_1 \circ \gamma_2}{\longleftarrow} \langle A; \leq \rangle} \langle A; \leq \rangle$$

$$\langle C; \sqsubseteq \rangle \stackrel{\gamma_1 \circ \gamma_2}{\longleftarrow} \langle A; \leq \rangle$$

The Cartesian product of Galois connections

Theorem. Let $\langle C_1; \sqsubseteq_1 \rangle \xrightarrow{\gamma_1} \langle A_1; \leq_1 \rangle$ and

 $\langle C_2; \sqsubseteq_2 \rangle \stackrel{\gamma_2}{ \underset{\alpha_2}{\longleftrightarrow}} \langle A_2; \leq_2 \rangle$ be Galois connections. Then we can form a Galois connection between the Cartesian product of the concrete and abstract domains:

$$\langle C_1 \times C_2; \sqsubseteq_1 \times \sqsubseteq_2 \rangle \xrightarrow{\gamma} \langle A_1 \times A_2; \leq_1 \times \leq_2 \rangle$$

where

$$\alpha(\langle c_1, c_2 \rangle) = \langle \alpha_1(c_1), \alpha_2(c_2) \rangle$$
$$\gamma(\langle a_1, a_2 \rangle) = \langle \gamma_1(a_1), \gamma_2(a_2) \rangle$$

The Cartesian product of Galois connections

Theorem. (same, now typeset as inference rule)

$$\frac{\langle C_1; \sqsubseteq_1 \rangle \stackrel{\gamma_1}{\longleftarrow} \langle A_1; \leq_1 \rangle}{\langle C_1; \sqsubseteq_1 \rangle \stackrel{\gamma_2}{\longleftarrow} \langle A_1; \leq_1 \rangle} \stackrel{\langle C_2; \sqsubseteq_2 \rangle \stackrel{\gamma_2}{\longleftarrow} \langle A_2; \leq_2 \rangle}{\langle C_1 \times C_2; \sqsubseteq_1 \times \sqsubseteq_2 \rangle \stackrel{\gamma}{\longleftarrow} \langle A_1 \times A_2; \leq_1 \times \leq_2 \rangle}$$

where

$$\alpha(\langle c_1, c_2 \rangle) = \langle \alpha_1(c_1), \alpha_2(c_2) \rangle$$
$$\gamma(\langle a_1, a_2 \rangle) = \langle \gamma_1(a_1), \gamma_2(a_2) \rangle$$

The Cartesian product of Galois connections

Theorem. (same, now typeset as inference rule)

$$\frac{\langle C_1; \sqsubseteq_1 \rangle \stackrel{\gamma_1}{\longleftarrow} \langle A_1; \leq_1 \rangle}{\langle C_1; \sqsubseteq_1 \rangle \stackrel{\gamma_2}{\longleftarrow} \langle A_1; \leq_1 \rangle} \stackrel{\langle C_2; \sqsubseteq_2 \rangle \stackrel{\gamma_2}{\longleftarrow} \langle A_2; \leq_2 \rangle}{\langle C_1 \times C_2; \sqsubseteq_1 \times \sqsubseteq_2 \rangle \stackrel{\gamma}{\longleftarrow} \langle A_1 \times A_2; \leq_1 \times \leq_2 \rangle}$$

where

$$\alpha(\langle c_1, c_2 \rangle) = \langle \alpha_1(c_1), \alpha_2(c_2) \rangle$$
$$\gamma(\langle a_1, a_2 \rangle) = \langle \gamma_1(a_1), \gamma_2(a_2) \rangle$$

Example: we can abstract a pair of natural number sets to a Parity pair:

$$\frac{\langle \wp(\mathbb{N}_0); \subseteq \rangle \xleftarrow{\gamma} \langle Par; \sqsubseteq \rangle}{\langle \wp(\mathbb{N}_0); \subseteq \rangle \times \langle \wp(\mathbb{N}_0); \subseteq \rangle \xrightarrow{\gamma} \langle Par; \sqsubseteq \rangle} \langle \wp(\mathbb{N}_0); \subseteq \rangle \times \langle \wp(\mathbb{N}_0); \subseteq \rangle \xrightarrow{\gamma} \langle Par \times Par; \sqsubseteq \rangle \times \langle \wp(\mathbb{N}_0); \subseteq \rangle \times \langle \wp(\mathbb{N}_0); \subseteq$$

Reduced product

A *reduced product* improves two (or more) abstractions of the same domain:

Theorem. Let
$$\langle C; \sqsubseteq \rangle \xrightarrow{\alpha_1}^{\gamma_1} \langle A_1; \leq_1 \rangle$$
 and

 $\langle C; \sqsubseteq \rangle \stackrel{\gamma_2}{\longleftrightarrow} \langle A_2; \leq_2 \rangle$ be Galois connections between complete lattices. Then the reduced product is a Galois surjection:

$$\langle C; \sqsubseteq \rangle \stackrel{\gamma}{\longleftarrow} \langle A_1 \times A_2; \leq_1 \times \leq_2 \rangle$$

where $\alpha(c) = \langle \alpha_1(c), \alpha_2(c) \rangle$
 $\gamma(\langle a_1, a_2 \rangle) = \gamma_1(a_1) \sqcap \gamma_2(a_2)$

Note: the paper contains a much more general version

Example: reduced product

Imagine we abstract an integer variable x using both Sign and Parity abstract domains.

If x = 0 from the Sign domain $(\gamma(0) = \{0\})$ and x is odd from the Parity domain $(\gamma(odd) = \{1, 3, 5, \dots\})$, we gain information by combining it.

A reduction tells us, no integers are 0 and odd, hence we reduce to $\gamma(0) \cap \gamma(odd) = \emptyset$.

Note: Not transferring information from one domain to the other corresponds to running the analyses separately.

Partitioning

Definition. Let L be a set of labels. A partition of a complete lattice $\langle C; \sqsubseteq, \bot, \top, \sqcup, \sqcap \rangle$ is a function $\delta: L \to C$ that (a) covers $C: \top = \sqcup_{l \in L} \delta(l)$, and (b) is disjoint: $\forall \ell, \ell' \in L: \ell \neq \ell' \implies \delta(\ell) \sqcap \delta(\ell') = \bot$

Proposition. Let $\delta: L \to C$ be a partition of a complete lattice $\langle C; \sqsubseteq, \bot, \top, \sqcup, \sqcap \rangle$. Then the abstract domain $A = \prod_{\ell \in L} \{c \sqcap \delta(\ell) \mid c \in C\}$ ordered componentwise $a \le a' \iff \forall \ell \in L : a(\ell) \sqsubseteq a'(\ell)$ forms a Galois connection:

$$\langle C; \sqsubseteq \rangle \xrightarrow{\gamma} \langle A; \leq \rangle$$

where
$$\alpha(c) = \lambda \ell. c \sqcap \delta(\ell)$$
 $\gamma(a) = \bigsqcup_{\ell \in L} a(\ell)$

By reducing the domain we can obtain a Galois surj.

Example: partitioning

Intuitively, we divide a set into a number of regions:

For example, the first abstraction of the 3 counter machine collecting semantics, groups quadruples with same pc: L=PC

$$\delta(pc) = \{ \langle pc, xv, yv, zv \rangle \mid xv \in \mathbb{N}_0, yv \in \mathbb{N}_0, zv \in \mathbb{N}_0 \}$$

$$\wp(PC \times \mathbb{N}_0 \times \mathbb{N}_0 \times \mathbb{N}_0) \xrightarrow{\gamma} PC \to \wp(PC \times \mathbb{N}_0 \times \mathbb{N}_0 \times \mathbb{N}_0)$$

Correctness, optimality, and completeness

Definition. If $\alpha \circ F \leq F^{\#} \circ \alpha$ we say $F^{\#}$ is a (locally) correct (or sound) approximation of F

Definition. If $F^{\#} = \alpha \circ F \circ \gamma$ we say $F^{\#}$ is an optimal approximation of F

Intuitively we can't do better with the available abstract information.

Definition. If $\alpha \circ F = F^{\#} \circ \alpha$ we say $F^{\#}$ is a complete approximation of F (no loss of information)

Intuitively we can't do better with the available concrete information.

These definitions generalize to n-ary functions F and $F^{\#}$

Example

Consider abstract addition $(\widehat{+})$ over the Sign domain.

Addition is not complete, e.g.:

$$0 = \alpha(42 + (-42))$$

$$\sqsubseteq \alpha(42) + \alpha(-42) = pos + neg = \top$$

However addition is an optimal approximation, e.g.:

$$\alpha(\gamma(pos) + \gamma(neg))$$

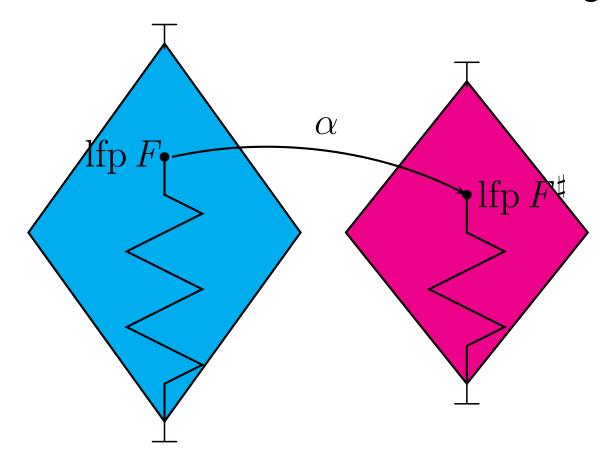
$$= \alpha(\{n \mid n \ge 0\} + \{n \mid n \le 0\})$$

$$= \alpha(\{n + n' \mid n \ge 0 \land n' \le 0\})$$

$$= \alpha(\mathbb{Z}) = \top$$

Joy of completeness (Cousot-Cousot:POPL79)

By the *stronger fixed-point transfer theorem* we can compute a direct abstraction of the collecting semantics:



Theorem. Let $\langle C; \sqsubseteq \rangle \stackrel{\gamma}{\longleftarrow} \langle A; \leq \rangle$ be a Galois connection between complete lattices. If F and F^{\sharp} are monotone and $\alpha \circ F = F^{\sharp} \circ \alpha$ then $\alpha(\operatorname{lfp} F) = \operatorname{lfp} F^{\sharp}$

From concrete to abstract operator, constructively

These definitions lead us to the following two "recipes" for approximating a concrete operator F:

1. Push α 's under the function definition:

$$\alpha \circ F(c) = \dots = F^{\#}(\alpha(c))$$

(geared towards complete approximation, however it is still correct/sound if we upward judge underway)

2. Compose F with α and γ :

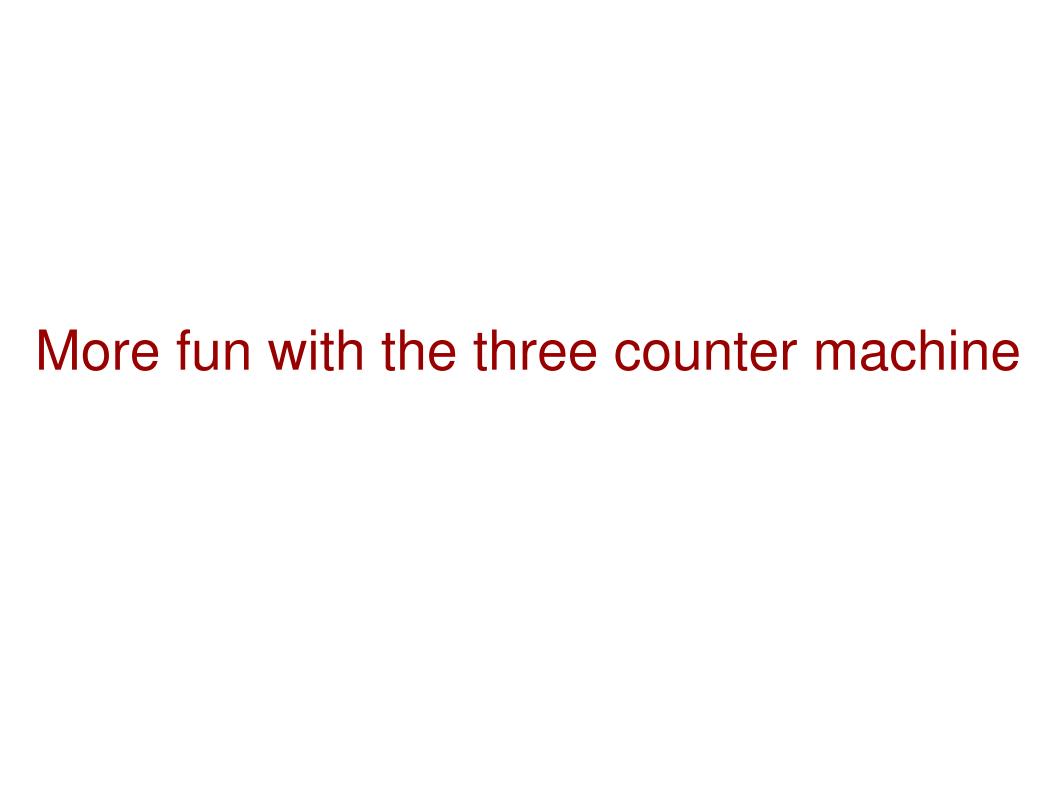
$$\alpha \circ F \circ \gamma(a) = \dots = F^{\#}(a)$$

(geared towards optimal approximation, however it is still correct/sound if we upward judge underway)

The art of calculation...

"We habitually use this proposition constructively in order to derive the abstract semantics from the definition of the concrete semantics: for the basis we simply let $[\bot^{\sharp}]$ be $[\alpha(\perp)]$. For the semantic function $[F^{\sharp}]$ starting from the term $\alpha(F(c))$ we replace α and F by their definitions and then simplify the expression in order to let the term $\alpha(c)$ come out, in which case we let the resulting expression (where $\alpha(c)$ is replaced by a) be the definition of $[F^{\sharp}(a)]$."

Cousot-Cousot:JLC92



Previously: analysing the 3 counter machine

```
Var ::= x | y | z 

Inst ::= inc var | dec var | zero var m else n | stop 

States = PC x \N_0 x \N_0
```

Transition relation:

```
if P_pc = inc x
<pc, xv, yv, zv> --> <pc+1, xv+1, yv, zv>
                 --> <pc+1, xv, yv+1, zv>
                                                             if P_pc = inc y
                 --> < pc+1, xv, yv, zv+1>
                                                             if P_pc = inc z
                                                     if P_pc = dec x / xv>0
<pc, xv, yv, zv> --> <pc+1, xv-1, yv, zv>
                --> < pc+1, xv, yv-1, zv>
                                                     if P_pc = dec y / yv>0
                --> < pc+1, xv, yv, zv-1>
                                                     if P_pc = dec z / zv>0
                                              if P_pc = zero x pc' else pc''
<pc, xv, yv, zv> --> <pc', xv, yv, zv>
                                                 / \times xx = 0
                 --> <pc'', xv, yv, zv>
                                              if P_pc = zero x pc' else pc''
                                                 /\ xv<>0
<pc, xv, yv, zv> --> <pc', xv, yv, zv>
                                              if P_pc = zero y pc' else pc''
                                                 /\ vv=0
                --> <pc'', xv, yv, zv>
                                              if P_pc = zero y pc' else pc''
                                                 /\ yv<>0
                                              if P_pc = zero z pc' else pc''
<pc, xv, yv, zv> --> <pc', xv, yv, zv>
                                                 / \ ZV=0
                                              if P_pc = zero z pc' else <math>\frac{9}{48}
                 --> <pc'', xv, yv, zv>
                                                 /\ zv<>0
```

We left off here:

```
F#(S#) = \emptyset. [1 -> { < i, 0, 0 > | i in N_0 }]
  U.
              U. Ø. [pc+1 -> \{ < xv+1, yv, zv> \}]
   \{ \langle xv, yv, zv \rangle \} C S\#(pc)
      P pc = inc x
                                        (...and for y and z)
  IJ.
              U. Ø. [pc+1 -> \{ < xv-1, yv, zv> \}]
   \{ \langle xv, yv, zv \rangle \} C S\#(pc)
      P pc = dec x
            0 < v \times
                                        (...and for y and z)
  U.
              U. Ø. [pc' -> \{ \langle xv, yv, zv \rangle \}]
   \{ \langle xv, yv, zv \rangle \} C S\#(pc)
  P_pc = zero x pc' else pc''
             v=0
                                        (...and for y and z)
  U.
              U. Ø. [pc'' -> { <xv, yv, zv> }]
   \{ \langle xv, yv, zv \rangle \} C S\#(pc)
  P_pc = zero x pc' else pc''
            xv <> 0
                                        (...and for y and z)
```

Call-by-need Galois connections :-) (1/3)

Abstracting a set valued function:

Given a Galois connection between complete lattices, we can lift it pointwise to function spaces (also complete lattices):

$$\frac{\langle \wp(C); \subseteq \rangle \stackrel{\gamma}{\longleftarrow} \langle A; \sqsubseteq \rangle}{\langle D \rightarrow \wp(C); \dot{\subseteq} \rangle \stackrel{\dot{\gamma}}{\longleftarrow} \langle D \rightarrow A; \dot{\sqsubseteq} \rangle}$$

where
$$\dot{\alpha}(F)=\lambda d.\,\alpha(F(d))$$
 $\dot{\gamma}(F^\#)=\lambda d.\,\gamma(F^\#(d))$

Call-by-need Galois connections :-) (2/3)

Abstracting a set of triples by a triple of sets:

$$\overline{\langle \wp(A \times B \times C); \subseteq \rangle \xleftarrow{\gamma} \langle \wp(A) \times \wp(B) \times \wp(C); \subseteq_{\times} \rangle}$$

between complete lattices (the latter being reduced) where

$$\subseteq_{\times} = \subseteq \times \subseteq \times \subseteq$$

$$\alpha(T) = \langle \pi_1(T), \pi_2(T), \pi_3(T) \rangle$$

$$\gamma(\langle X, Y, Z \rangle) = X \times Y \times Z$$

Call-by-need Galois connections :-) (3/3)

Abstracting a triple of sets by an abstract triple:

Given three Galois connections between complete lattices, we can form a new Galois connection (also over complete lattices):

$$\langle \wp(A); \subseteq \rangle \xleftarrow{\gamma_A} \langle A'; \sqsubseteq_a \rangle$$

$$\frac{\langle \wp(B); \subseteq \rangle \xleftarrow{\gamma_B} \langle B'; \sqsubseteq_b \rangle}{\langle \wp(A) \times \wp(B) \times \wp(C); \subseteq_{\times} \rangle \xleftarrow{\gamma_C} \langle A' \times B' \times C'; \sqsubseteq_{\times} \rangle}$$

$$\subseteq_{\times} = \subseteq_{\times} \subseteq_{\times} \subseteq$$

$$\sqsubseteq_{\times} = \sqsubseteq_{a} \times \sqsubseteq_{b} \times \sqsubseteq_{c}$$

$$\alpha(\langle X, Y, Z \rangle) = \langle \alpha_{A}(X), \alpha_{B}(Y), \alpha_{C}(Z) \rangle$$

$$\gamma(\langle X', Y', Z' \rangle) = \langle \gamma_{A}(X), \gamma_{B}(Y), \gamma_{C}(Z) \rangle$$

Three counter analysis from 10000 feet¹

The Parity analysis is composed in two. Yesterday:

$$\frac{}{\wp(PC \times \mathbb{N}_0 \times \mathbb{N}_0 \times \mathbb{N}_0) \longleftrightarrow PC \to \wp(\mathbb{N}_0 \times \mathbb{N}_0 \times \mathbb{N}_0)}$$

Today:

$$\frac{\wp(\mathbb{N}_0) \stackrel{\longleftarrow}{\longleftarrow} Par}{\wp(\mathbb{N}_0 \times \mathbb{N}_0) \stackrel{\smile}{\longleftarrow} \wp(\mathbb{N}_0) \times \wp(\mathbb{N}_0) \times \wp(\mathbb{N}_0)}{\wp(\mathbb{N}_0) \times \wp(\mathbb{N}_0) \times \wp(\mathbb{N}_0) \times \wp(\mathbb{N}_0) \times \wp(\mathbb{N}_0) \stackrel{\longleftarrow}{\longleftarrow} Par} \frac{\wp(\mathbb{N}_0) \stackrel{\longleftarrow}{\longleftarrow} Par}{\wp(\mathbb{N}_0 \times \mathbb{N}_0 \times \mathbb{N}_0) \stackrel{\longleftarrow}{\longleftarrow} Par \times Par \times Par} = \frac{\wp(\mathbb{N}_0 \times \mathbb{N}_0 \times \mathbb{N}_0) \stackrel{\longleftarrow}{\longleftarrow} Par \times Par \times Par}{PC \rightarrow \wp(\mathbb{N}_0 \times \mathbb{N}_0 \times \mathbb{N}_0) \stackrel{\longleftarrow}{\longleftarrow} PC \rightarrow Par \times Par \times Par}$$

Hence by transitivity:

$$\frac{}{\wp(PC \times \mathbb{N}_0 \times \mathbb{N}_0 \times \mathbb{N}_0) \longleftrightarrow PC \to Par \times Par \times Par}$$

At home: operators/property transformers

Yesterday you calculated abstract operators:

```
=0 : Parity -> Parity
<>0 : Parity -> Parity
+1 : Parity -> Parity
-1 : Parity -> Parity
```

from concrete ones over $\wp(N_0)$:

```
=0 : P(N0) -> P(N0)

= \S. {s | s in S /\ s=0 }

<>0 : P(N0) -> P(N0)

= \S. {s | s in S /\ s<>0 }

+1 : P(N0) -> P(N0)

= \S. {s+1 | s in S}

-1 : P(N0) -> P(N0)

= \S. {s-1 | s in S /\ s>0 }
```

Result

```
\S#.
    <bot, bot, bot>.[ 1 -> <top, even, even> ]
      U.
          U. <bot, bot, bot>.[ pc+1 -> [var++]#(S#(pc)) ]
   P_pc = inc var
      U.
          U. \langle bot, bot, bot \rangle. [ pc+1 -> [var--]#(S#(pc)) ]
   P_pc = dec var
      U.
                  <bot, bot, bot>.[ pc' -> [var=0](S#(pc)) ]
                  U. <bot, bot, bot>.[ pc'' -> [var<>0](S#(pc))]
P_pc = zero var pc' else pc''
```

Summary

Summary

We've taken a more in depth look at AI based on Cousot-Cousot:JLP92.

- Foundations: Fixed points, Galois connections, ...
- The Galois approach and friends: closure operators,
 Moore families, . . .
- From collecting semantics to analysis
- + analysis of Plotkin's three counter machine