Abstract Interpretation, Re-Reloaded and Structural Abstractions

Jan Midtgaard

Winter School, Day 4

http://janmidtgaard.dk/aiws15/

Saint Petersburg, Russia, 2015

With figures courtesy of David A. Schmidt, Patrick and Radhia Cousot

Yesterday

A first in-depth look at abstract interpretation based on Cousot-Cousot:JLP92.

- Foundations: Fixed points, Galois connections, . . .
- The Galois approach and friends: closure operators, Moore families, . . .
- From collecting semantics to analysis (soundness, optimality, completeness)

Analysing Plotkin's three counter machine

Today: Two parts

1.	More approximation methods (Cousot-Cousot:JLP92)
	□ Relational and attribute independent analysis
	□ Inducing, abstracting, approximating fixed points
	□ Widening, narrowing
	□ Forwards/backwards analysis
2.	A catalogue of abstractions
	□ Toolbox abstractions
	□ Structural abstractions: sums, pairs/tuples,
	□ Numerical abstractions: constants, intervals, polyhedra
	☐ Concretization-based abstract interpretation, briefly
	A retrospective on the 3 counter machine analysis

Relational vs. independent attribute analysis

Relational vs. independent attribute analysis

Definition. We say an analysis is attribute independent, if attributes are analysed independently of each other.

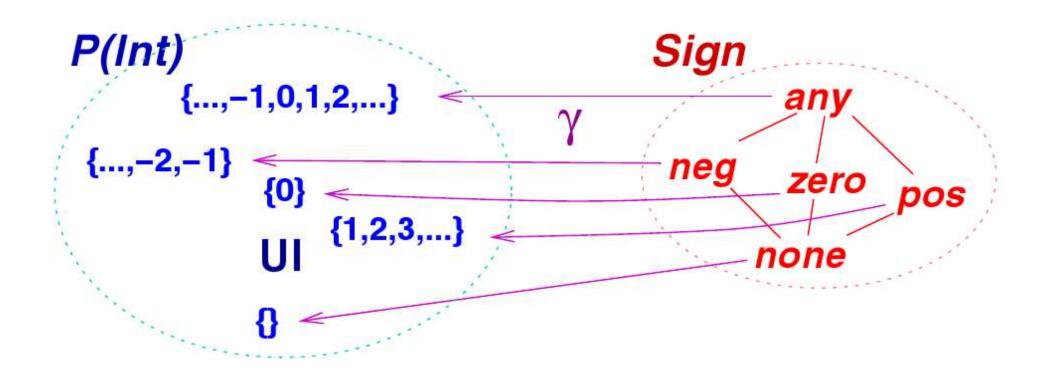
For example, the Parity analysis of x, y, and z we have developed, analyses the possible values of each variable in isolation.

Definition. We say an analysis is relational, if it can determine relations between attributes.

For example, imagine an analysis that can determine x is odd if and only if y is even.

The loss of information in joins

Consider the following Sign domain (a variant of the two Sign domains we studied yesterday):



Observe how γ doesn't preserve \square .

Disjunctive/down-set completion

Given a Galois connection we can improve it, by considering sets of elements:

Proposition. Given a Galois connection $\langle \wp(C); \subseteq \rangle \stackrel{\gamma}{\Longleftrightarrow} \langle A; \leq \rangle$ between complete lattices: $\langle \wp(C); \subseteq, \emptyset, C, \cup, \cap \rangle$ and $\langle A; \leq, \bot, \top, \lor, \land \rangle$ we can replace A by $\wp_{\downarrow}(A) = \{ \downarrow S \mid S \subseteq A \}$ to form another Galois connection:

$$\langle \wp(C); \subseteq \rangle \xrightarrow{\gamma^{\wp}} \langle \wp_{\downarrow}(A); \subseteq \rangle$$

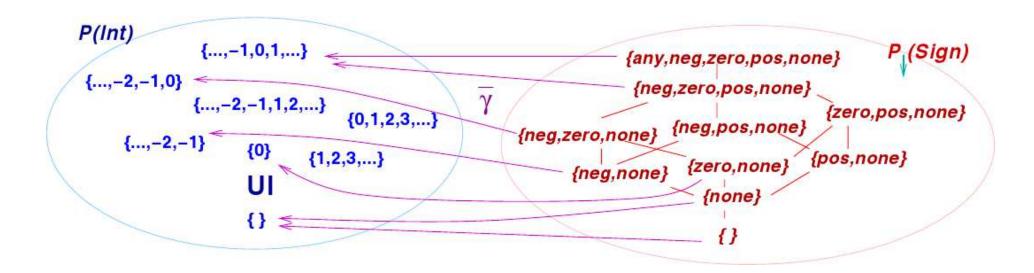
where
$$\downarrow S = \{a \in A \mid \exists a' \in S : a \leq a'\}$$

$$\alpha^{\wp}(cs) = \cap \{as \mid cs \subseteq \gamma^{\wp}(as)\} = \downarrow \{\alpha(\{c\}) \mid c \in cs\}$$

$$\gamma^{\wp}(as) = \gamma(as) = \cup_{a \in as} \gamma(a)$$

Disjunctive completion to the rescue

The completion of the earlier Sign domain:



This domain is more expressive, however exponentially larger than the starting point.

In particular, it now preserves ⊔ (from Sign)

Q: What do we obtain by domain reduction?

Not always a free lunch...

Disjunctive completion may not provide an improvement:

Q: What do we obtain by domain reduction?

From attribute independent to relational analysis

Observation: Given n independent analyses, the disjunctive completion of their reduced product provides a *relational analysis*.

Example: Consider the disjunctive completion of the reduced product for Parity, for two variables x and y.

The resulting domain can express "x is odd if and only if y is even":

```
\downarrow \{\langle odd, even \rangle, \langle even, odd \rangle\} 
= \{\langle odd, even \rangle, \langle even, odd \rangle, \dots \}
```

Inducing, abstracting, and approximating fixed points

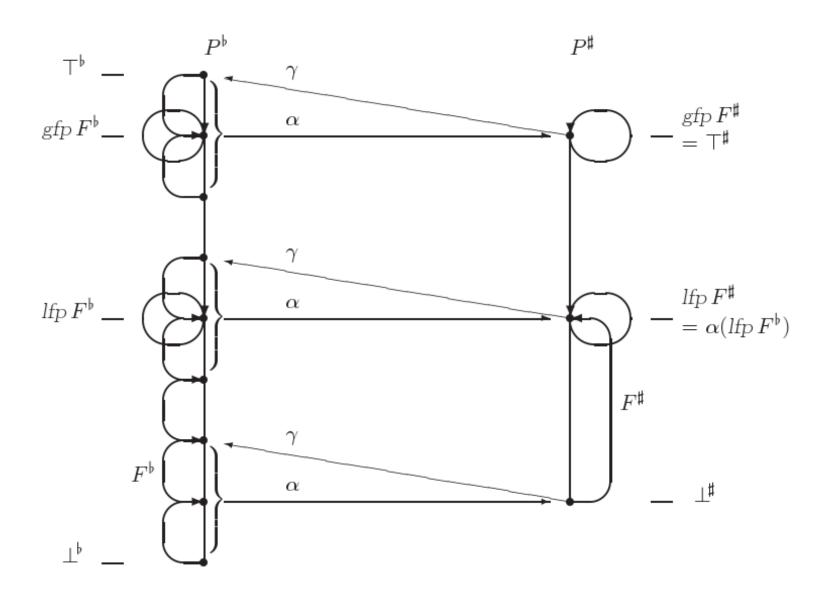
Fixed point inducing using Galois connections

Proposition. If $\langle C; \sqsubseteq \rangle \stackrel{\gamma}{ \hookleftarrow_{\alpha}} \langle A; \leq \rangle$ is a Galois connection between posets $\langle C; \sqsubseteq, \sqcup \rangle$ and $\langle A; \leq, \vee \rangle$, $F: C \to C$ is such that $\mathrm{lfp} \ F = \bigsqcup_{n \geq 0} F^n(\bot)$, $\alpha(\bot_c) = \bot_a$, $F^\#: A \to A$ is such that $\alpha \circ F = F^\# \circ \alpha$ then $\alpha(\mathrm{lfp} \ F) = \bigvee_{n \geq 0} F^{\#^n}(\bot_a)$ and $\bigvee_{n \geq 0} F^{\#^n}(\bot_a)$ is a fixed point of $F^\#$. If $F^\#: A \to A$ is monotone, it is furthermore the least fixed point $(\ge \bot_a)$.

Note: this proposition concerns a *complete* approximation.

Also note: this proposition relaxes the preconditions of the stronger fixed point theorem (from yesterday).

Illustration of induced fixed point



Fixed point abstraction and approx. using Galois conn.

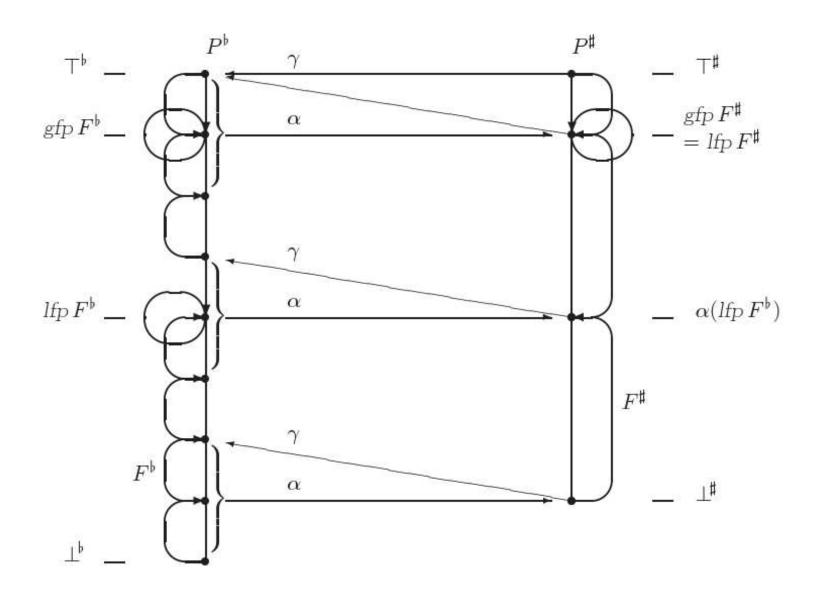
Proposition. If $\langle C; \sqsubseteq, \bot_c, \top_c, \sqcup, \sqcap \rangle$ and $\langle A; \leq, \bot_a, \top_a, \vee, \wedge \rangle$, are complete lattices, $\langle C; \sqsubseteq \rangle \xrightarrow{\gamma} \langle A; \leq \rangle$ and $F: C \to C$ is monotone, then $\alpha(\operatorname{lfp} F) \leq \operatorname{lfp}(\alpha \circ F \circ \gamma)$

Note: this proposition concerns an *optimal* approximation (akin to what you did on Tuesday).

Proposition. If $\langle A; \leq, \perp_a, \top_a, \vee, \wedge \rangle$ is a complete lattice, $F^\#, F^{\#'}: A \to A$ are monotone functions and $F^\# \leq F^{\#'}$, then $\operatorname{lfp} F^\# \leq \operatorname{lfp} F^{\#'}$.

Read: any monotone, upward judgement of the $\alpha \circ F \circ \gamma$ composition is fine.

Illustration of approximated fixed point



Widening/narrowing reloaded

Narrowing motivation

We are after a (finite) approximation sequence $\check{X}^0 \geq \check{X}^1 \geq \check{X}^2 \geq \cdots \geq \check{X}^n \geq \operatorname{lfp} F^{\#}$ of the least fixed point (from above).

We could start from, e.g., $\check{X}^0 = \top$.

For the inductive step, not much is available: the previous iterate \check{X}^k and the function $F^\#$. Assuming $\operatorname{lfp} F^\# \leq \check{X}^k$ and $F^\#$ is monotone, we want to ensure $\operatorname{lfp} F^\# \leq \check{X}^{k+1}$.

The narrowing operator △ simply combines the available information:

$$\check{X}^{k+1} = \check{X}^k \, \triangle \, F^\#(\check{X}^k)$$

Narrowing definition

Definition. A narrowing operator \triangle satisfies the following:

- \Box For all $x, y : (x \triangle y) \le x$ (ensure decr. seq.)
- $\neg \quad \textit{For all } x, y, z : x \leq y \ \land \ x \leq z \implies x \leq (y \land z)$ (keep above)
- For any decreasing chain X_i the alternative chain defined as $\check{X}^0 = X_0$ and $\check{X}^{k+1} = \check{X}^k \triangle X_{k+1}$ stabilizes after a finite number of steps.

(terminate)

Example: interval narrowing

Consider the domain of intervals: $\langle \wp(\mathbb{Z}); \subseteq \rangle \xrightarrow{\gamma} \langle Interval; \sqsubseteq \rangle$ defined as follows:

$$Interval = \{[l; u] \mid l \in \mathbb{Z} \cup \{-\infty\} \land u \in \mathbb{Z} \cup \{+\infty\} \land l \leq u\} \cup \{\bot\}$$
$$[a; b] \sqsubseteq [c; d] \iff c \leq a \land b \leq d$$
$$\alpha(\emptyset) = \bot$$
$$\alpha(X) = [\min X, \max X] \qquad \min \mathbb{Z} = -\infty \qquad \max \mathbb{Z} = +\infty$$

Strictly decreasing interval chains can be infinite:

$$[0; +\infty] \supset [1; +\infty] \supset [2; +\infty] \supset \dots$$

Hence we need a narrowing operator:

$$\bot \triangle I = \bot \qquad \qquad I \triangle \bot = \bot$$

$$[a;b] \triangle [c;d] = [\text{if } a = -\infty \text{ then } c \text{ else } a; \text{ if } b = +\infty \text{ then } d \text{ else } b]$$

Downward iteration with narrowing

Proposition. If $F^{\#}: A \to A$ is a monotone function, and $\triangle: A \times A \to A$ is a narrowing operator and $F^{\#}(a) = a \leq a'$ then $\check{X}^0 = a', \ldots, \check{X}^{k+1} = \check{X}^k \triangle F^{\#}(\check{X}^k)$ converges with limit \check{X}^n , $n \in \mathbb{N}$ such that $a < \check{X}^n < a'$.

Intuition: this decreasing chain is finite and may take us closer to $F^{\#}$'s fixed point from above.

Note: In a complete lattice, if all strictly decreasing chains are finite, we can use $\triangle = \Box$.

Widening motivation

We aim for a better initial approximation than \top .

We are after a (finite) approximation sequence $\hat{X}^0 \leq \hat{X}^1 \leq \hat{X}^2 \leq \cdots \leq \hat{X}^n \geq \operatorname{lfp} F^{\#}$ of the least fixed point (starting below, ending above).

We could, e.g., try to iterate *above* a standard fixed point iteration: $X^0 = \bot, X^{k+1} = F^{\#}(X^k)$ towards $\operatorname{lfp} F^{\#}$.

Hence start from $\hat{X}^0 = \bot$

$$\hat{X}^{k+1} = \hat{X}^k \, \nabla \, F^\#(\hat{X}^k)$$

Widening definition

Definition. A widening operator satisfies the following:

- □ For all $x, y : x \le (x \lor y) \land y \le (x \lor y)$ (keep above)
- For any increasing chain $X_0 \sqsubseteq X_1 \sqsubseteq X_2 \sqsubseteq \dots$ the alternative chain defined as $\hat{X}^0 = X_0$ and $\hat{X}^{k+1} = \hat{X}^k \nabla X_{k+1}$ stabilizes after a finite number of steps.

Example: interval widening

Consider again the domain of intervals:

$$\langle \wp(\mathbb{Z}); \subseteq \rangle \xrightarrow{\gamma} \langle Interval; \sqsubseteq \rangle$$

For intervals strictly increasing chains can be infinite:

$$[0;0] \sqsubset [0;1] \sqsubset [0;2] \sqsubset \dots$$

Hence we need a widening operator:

$$\bot \triangledown I = I \qquad \qquad I \triangledown \bot = I$$

$$[a;b] \triangledown [c;d] = [\text{if } c < a \text{ then } -\infty \text{ else } a; \text{ if } d > b \text{ then } +\infty \text{ else } b]$$

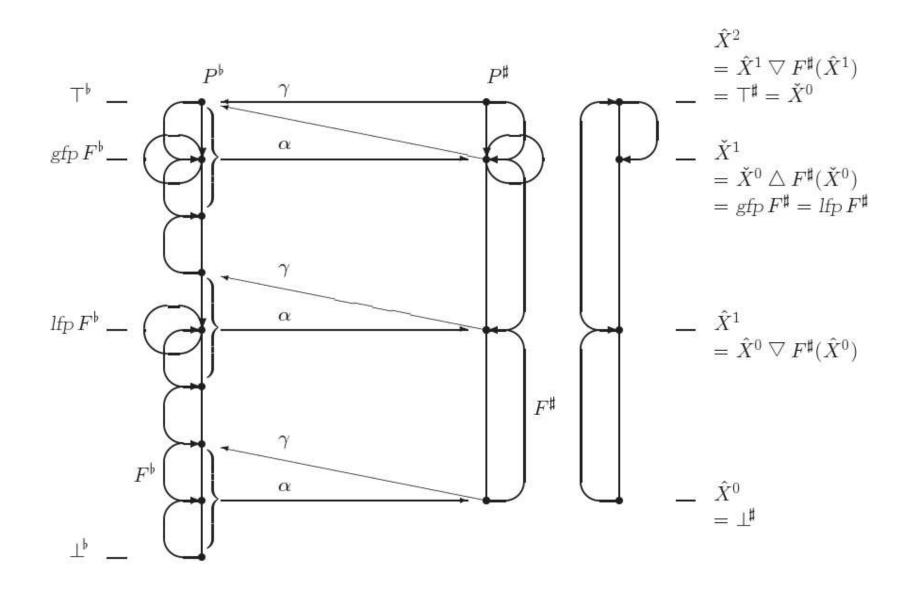
Upward iteration with widening

Proposition. If $F^{\#}: A \to A$ is a monotone function, and $\nabla: A \times A \to A$ is a widening operator then $\hat{X}^0 = \bot, \ldots, \hat{X}^{k+1} = \hat{X}^k \nabla F^{\#}(\hat{X}^k)$ converges with limit \hat{X}^n , $n \in \mathbb{N}$ such that $\operatorname{lfp} F^{\#} \leq \hat{X}^n$.

Note: In a complete lattice, if all strictly increasing chains are finite, we can use $\nabla = \Box$.

We don't actually need to widen in such a situation.

Combining widening/narrowing iteration



Forwards/backwards analysis

Transition systems with final states

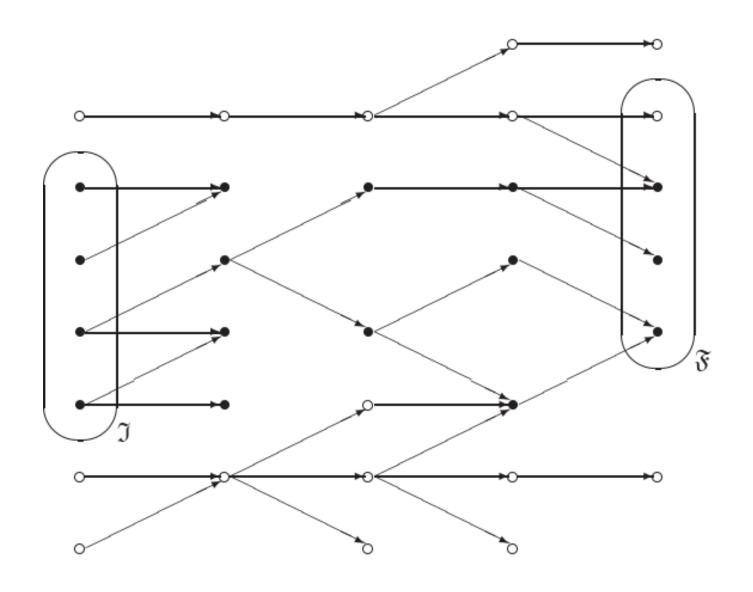
All though the transition system definition from day 1 included final states we haven't used them much:

Definition. A transition system is a quadruple $\langle S, S_i, S_f, \rightarrow \rangle$, where

- \Box S is a set of states
- \Box $S_i \subseteq S$ is a set of initial states
- \Box $S_f \subseteq S$ is a set of final states ($\forall s \in S_f, s' \in S : s \not\rightarrow s'$)
- $\neg \rightarrow \subseteq S \times S$ is a transition relation relating a state to its (possible) successors

Forwards collecting semantics (1/2)

Descendants of initial states (aka reachable states):



Forwards collecting semantics (2/2)

The forwards (top-down) collecting semantics can be expressed as a fixed point:

Ifp
$$F$$
 where $F(X) = S_i \cup \{s \mid \exists s' \in X : s' \to s\}$
= $S_i \cup post[\to](X)$

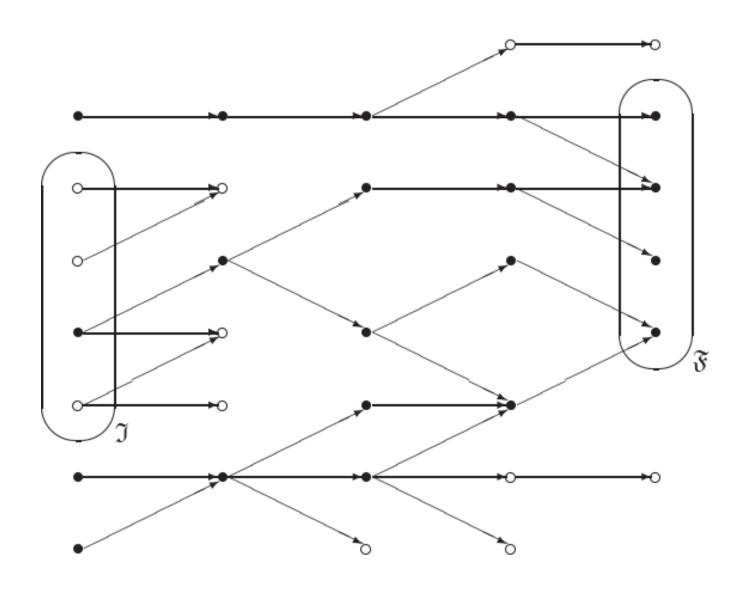
with

$$post[r](X) = \{s \mid \exists s' \in X : \langle s', s \rangle \in r\}$$

as we have already seen.

Backwards collecting semantics (1/2)

Ascendants of final states:



Backwards collecting semantics (2/2)

The backwards (bottom-up) collecting semantics can also be expressed as a fixed point:

Ifp B where
$$B(X) = S_f \cup \{s \mid \exists s' \in X : s \to s'\}$$

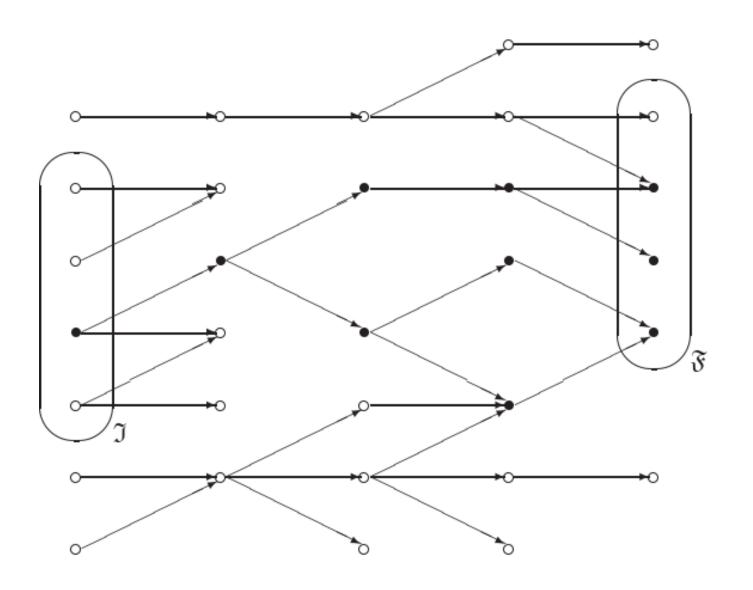
= $S_f \cup pre[\to](X)$

with

$$pre[r](X) = \{s \mid \exists s' \in X : \langle s, s' \rangle \in r\}$$

Forwards/backwards collecting semantics (1/2)

Descendants of initial states which are also ascendants of final states:



Forwards/backwards collecting semantics (2/2)

This set of states can be expressed as the intersection of the two fixed points just defined:

$$lfp F \cap lfp B$$

The above is not computable in general, but the intuition is:

- "run program forwards",
- 2. "run program backwards",
- intersect.

Forwards/backwards collecting semantics in other words

We can express forwards/backward collecting semantics in several ways:

Proposition. Given a transition system $\langle S, S_i, S_f, \rightarrow \rangle$ with $X \subseteq S$, we have

1.
$$pre[\rightarrow](X) \cap lfp F \subseteq pre[\rightarrow](X \cap lfp F)$$

2.
$$post[\rightarrow](X) \cap lfp B \subseteq post[\rightarrow](X \cap lfp B)$$

$$\operatorname{lfp} F \cap \operatorname{lfp} B$$

3. =
$$lfp(\lambda X. lfp F \cap B(X))$$

$$4. = lfp(\lambda X. lfp B \cap F(X))$$

$$5. = \operatorname{lfp}(\lambda X. \operatorname{lfp} F \cap \operatorname{lfp} B \cap B(X))$$

6. =
$$lfp(\lambda X. lfp F \cap lfp B \cap F(X))$$

Forwards/backwards analysis

Once we move to an abstract domain, a sequence akin to the alternative characterizations is more precise:

Proposition. If $\langle C; \sqsubseteq, \bot_c, \top_c, \sqcup, \sqcap \rangle$ and $\langle A; \leq, \bot_a, \top_a, \vee, \wedge \rangle$, are complete lattices, $\langle C; \sqsubseteq \rangle \stackrel{\gamma}{\Longleftrightarrow} \langle A; \leq \rangle$, $F, B: C \to C$ are monotone functions satisfying (5) and (6), $F^\#, B^\#: A \to A$ are monotone functions, such that $\alpha \circ F \circ \gamma \leq F^\#$ and $\alpha \circ B \circ \gamma \leq B^\#$, then the sequence

$$\Box$$
 $\dot{X}^0 = \operatorname{lfp} F^\#$ (or $\operatorname{lfp} B^\#$)

$$\exists \dot{X}^{2n+1} = lfp(\lambda X. \dot{X}^{2n} \wedge B^{\#}(X))$$

$$\Box \quad \dot{X}^{2n+2} = \operatorname{lfp}(\lambda X. \dot{X}^{2n+1} \wedge F^{\#}(X))$$

satisfies for all $k \in \mathbb{N}$: $\alpha(\operatorname{lfp} F \cap \operatorname{lfp} B) \leq \dot{X}^{k+1} \leq \dot{X}^k$

Hence, we have an ascending sequence.

Forwards/backwards analysis over infinite domains

We may also need to *narrow* in order to ensure termination of the downward iteration (if descending chains can be infinite):

$$\dot{X}^0 > \dot{X}^1 > \dot{X}^2 > \dots$$

Similarly, we may need to *widen* (and *narrow*) to ensure termination of the fixed point computation in each iterate.

- $\Box \quad \dot{X}^0 = \mathrm{lfp} \dots$
- $\Box \quad \dot{X}^{2n+1} = lfp(\ldots)$
- $\dot{X}^{2n+2} = lfp(\ldots)$

Part II: Toolbox abstractions

Warm up: Collapsing abstractions

The collapsing abstraction into a two element lattice:

$$\begin{array}{l} \alpha(\emptyset) = \bot \\ \alpha(S) = \top \quad \text{if} \quad S \neq \emptyset \\ \gamma(\bot) = \emptyset \\ \gamma(\top) = S \end{array} \qquad \begin{array}{l} \langle \wp(S); \subseteq \rangle \xleftarrow{\gamma} \langle \{\top, \bot\}; \sqsubseteq \rangle \\ \\ \langle \wp(S); \subseteq \rangle \xrightarrow{\alpha} \langle \{\top, \bot\}; \sqsubseteq \rangle \end{array}$$

is slightly better than the completely collapsing abstraction:

$$\begin{array}{l} \alpha(S) = \bot \\ \gamma(\bot) = S \end{array} \qquad \langle \wp(S); \subseteq \rangle \xrightarrow{\gamma} \langle \{\bot\}; \sqsubseteq \rangle$$

Subset abstraction

Given a set C and a strict subset $A \subset C$ hereof, the restriction to the subset induces a Galois connection:

$$\langle \wp(C); \subseteq \rangle \xrightarrow{\gamma_{\subset}} \langle \wp(A); \subseteq \rangle$$

$$\alpha_{\subset}(X) = X \cap A$$

$$\gamma_{\subset}(Y) = Y \cup (C \setminus A)$$

For example, in a *control-flow analysis* of untyped functional programs one can choose to focus on functional values (closures) and not model numbers:

$$\langle \wp(Clo + Num); \subseteq \rangle \xrightarrow{\gamma_{\subset}} \langle \wp(Clo); \subseteq \rangle$$

(Note: by a sum A + B we mean the disjoint union)

Elementwise abstraction

Let an elementwise operator $@: C \rightarrow A$ be given. Define

$$\alpha(P) = \{ \mathbf{@}(p) \mid p \in P \}$$

 $\gamma(Q) = \{ p \mid \mathbf{@}(p) \in Q \}$

Then

$$\langle \wp(C); \subseteq \rangle \xrightarrow{\gamma} \langle \wp(A); \subseteq \rangle$$

In particular, if @ is onto, we have

$$\langle \wp(C); \subseteq \rangle \xrightarrow{\gamma} \langle \wp(A); \subseteq \rangle$$

For example, Parity is isomorphic to an elementwise abstraction.

Q: what would A and @ be in this case?

Structural abstractions

Structural?

How is $State^{\#}$ constructed? It is possible to invent $State^{\#}$, and then the pair of adjoined functions. Another approach consists in inducing $State^{\#}$ from the structure of State.

—Alain Deutsch, POPL'90

Structural?

How is $State^{\#}$ constructed? It is possible to invent $State^{\#}$, and then the pair of adjoined functions. Another approach consists in inducing $State^{\#}$ from the structure of State.

—Alain Deutsch, POPL'90

Abstracting sums as a product

We can abstract sums by first utilizing a simple isomorphism:

$$\langle \wp(A+B); \subseteq \rangle \xrightarrow{\varphi} \langle \wp(A) \times \wp(B); \subseteq_{\times} \rangle$$

where

$$\alpha(S) = (\{a \mid a \in S \cap A\}, \{b \mid b \in S \cap B\})$$

This isomorphism will typically enable further approximation.

For example, the values of a mini-Scheme language could be such a disjoint sum: closure or number

Componentwise abstraction

We can abstract a Cartesian product (e.g., the outcome of the previous isomorphism) componentwise:

$$\frac{\langle \wp(C_i); \subseteq \rangle \xleftarrow{\gamma_i} \langle A_i; \sqsubseteq_i \rangle \quad i \in \{1, \dots, n\}}{\langle \wp(C_1) \times \dots \times \wp(C_n); \subseteq_{\times} \rangle \xleftarrow{\gamma} \langle A_1 \times \dots \times A_n; \sqsubseteq_{\times} \rangle}$$

with

$$\alpha(\langle X_1, ..., X_n \rangle) = \langle \alpha_1(X_1), ..., \alpha_n(X_n) \rangle$$

$$\gamma(\langle x_1, ..., x_n \rangle) = \langle \gamma_1(x_1), ..., \gamma_n(x_n) \rangle$$

and writing \sqsubseteq_{\times} for componentwise inclusion.

For example, we used the "triple version" (n = 3) for abstracting the 3 Counter Machine memory.

Abstracting pairs, coarsely

We can approximate a set-of-pairs by an abstract pair:

$$\frac{\langle \wp(C_1); \subseteq \rangle \stackrel{\gamma_1}{\longleftrightarrow} \langle A_1; \leq_1 \rangle}{\langle \wp(C_1); \subseteq \rangle \stackrel{\gamma_2}{\longleftrightarrow} \langle A_2; \leq_2 \rangle} \langle A_2; \leq_2 \rangle}$$
$$\langle \wp(C_1 \times C_2); \subseteq \rangle \stackrel{\gamma}{\longleftrightarrow} \langle A_1 \times A_2; \leq_\times \rangle}$$

where

$$\alpha(S) = \langle \alpha_1(\{a \mid (a,b) \in S\}), \alpha_2(\{b \mid (a,b) \in S\}) \rangle$$

For example, our transitive abstraction of the three memory registers of the 3CM boils down to this approach.

Abstracting pairs, better

Utilizing the well-known isomorphism

$$\langle \wp(C_1 \times C_2); \subseteq \rangle \xrightarrow{\varphi} \langle C_1 \to \wp(C_2); \dot{\subseteq} \rangle$$

we can approximate the set-of-pairs as a function between abstract domains:

$$\frac{\langle \wp(C_1); \subseteq \rangle \stackrel{\gamma_1}{\longleftrightarrow} \langle A_1; \leq_1 \rangle}{\langle \wp(C_1); \subseteq \rangle \stackrel{\gamma_2}{\longleftrightarrow} \langle A_2; \leq_2 \rangle} \langle A_2; \leq_2 \rangle}$$
$$\langle \wp(C_1 \times C_2); \subseteq \rangle \stackrel{\gamma}{\longleftrightarrow} \langle A_1 \to A_2; \leq_2 \rangle$$

$$\alpha(S) = \dot{|} \left[\left[\alpha_1(\{a\}) \mapsto \alpha_2(\{b\}) \right] \mid \langle a, b \rangle \in S \right]$$

Abstracting pairs, relationally

Finally we can go all-in and approximate the set-of-pairs as an abstract set-of-pairs:

$$\frac{\langle \wp(C_1); \subseteq \rangle \xleftarrow{\gamma_1} \langle A_1; \leq_1 \rangle \qquad \langle \wp(C_2); \subseteq \rangle \xleftarrow{\gamma_2} \langle A_2; \leq_2 \rangle}{\langle \wp(C_1 \times C_2); \subseteq \rangle \xleftarrow{\gamma} \langle \wp(A_1 \times A_2)/_{\equiv}; \subseteq \rangle}$$

where
$$\alpha(S) = \{ \langle \alpha_1(\{a\}), \alpha_2(\{b\}) \rangle \mid \langle a, b \rangle \in S \}$$

Note: this requires a domain reduction, equating all elements with the same meaning, e.g., in $\wp(Par \times Par)$, $\{\langle \top, even \rangle\} \equiv \{\langle odd, even \rangle, \langle even, even \rangle\}$.

Perhaps a fun project abstracting the 3CM in this manner?

Comparing the three pair abstractions

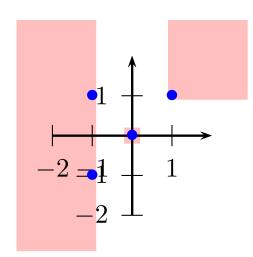
Suppose we abstract the signs of the following set

$$S = \{ \langle -1, -1 \rangle, \langle 0, 0 \rangle, \langle 1, 1 \rangle, \langle -1, 1 \rangle \}$$

coarsely:

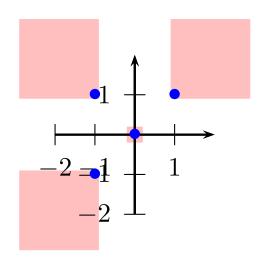
$$\alpha(S) = \langle \top, \top \rangle$$

better:



$$\alpha(S) = [neg \mapsto \top, \\ 0 \mapsto 0, \\ pos \mapsto pos]$$

relationally:



$$egin{aligned} lpha eg &\mapsto \top, & lpha(S) = \ 0 &\mapsto 0, & \{\langle neg, \ neg
angle, \langle 0, \ 0
angle, \\ \langle neg, \ pos
angle, \langle neg, \ pos
angle, \langle neg, \ pos
angle \} \end{aligned}$$

A projecting abstraction

$$\overline{\langle \wp(C_1 \times \cdots \times C_n); \subseteq \rangle \stackrel{\gamma}{\longleftrightarrow} \langle \wp(C_i); \subseteq \rangle}$$

where

$$\alpha(T) = \{ \pi_i t \mid t \in T \}$$
$$\gamma(E) = \{ t \mid \pi_i t \in E \}$$

(which can be seen as an 'elementwise abstraction')

The 3CM analysis uses a product of three such projections.

Abstracting monotone functions

Similar to the 'better abstraction' of pairs, we can approximate monotone functions by monotone abstract functions:

$$\frac{\langle C_1; \subseteq_1 \rangle \xleftarrow{\gamma_1} \langle A_1; \leq_1 \rangle}{\langle C_1 \xrightarrow{m} C_2; \subseteq_2 \rangle \xleftarrow{\gamma_2} \langle A_2; \leq_2 \rangle} \xrightarrow{\gamma} \langle A_1; \leq_1 \rangle$$

where $X \xrightarrow{m} Y$ are the monotone functions from X to Y and

$$\alpha(f) = \alpha_2 \circ f \circ \gamma_1$$
$$\gamma(g) = \gamma_2 \circ g \circ \alpha_1$$

For $C_1 = C_2$, $A_1 = A_2$ this reduces to an *optimal* approximation of f and how we approximate fixed points

Abstracting sequences

We can abstract a set of sequences (rather crudely) by collapsing their elements:

$$\frac{\langle \wp(C); \subseteq \rangle \xleftarrow{\gamma} \langle A; \leq \rangle}{\langle \wp(C^*); \subseteq \rangle \xleftarrow{\gamma^*} \langle A; \leq \rangle}$$

$$\alpha^*(S) = \alpha(\{x \mid x \in s \land s \in S\})$$

Numerical abstractions

Numerical abstractions

We've already come across a few numerical abstract domains: parity, signs, intervals, ...

All of these were attribute independent (or non-relational): they don't express relations between (the values of) variables.

Let's recap what we have seen and supplement with some new ones, both non-relational and relational.

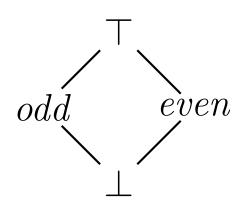
What is a numerical abstract domain?

A computer-representable property, with top and bottom: \top , \bot ioin, meet, and ordering operators: \Box , \Box , and \sqsubseteq widening and narrowing operators (optional, for domains with infinite strictly incr./decr. chains) some primitive operations: +, -, *, /other basic operations: test, assignment with matching backwards operations (optional, for (forwards/) backwards analysis) a γ -function mapping elements to their meaning (mathematical, not necessarily computable)

The parity domain

$$Par = \{\top, odd, even, \bot\}$$

$$\langle \wp(\mathbb{N}_0); \subseteq \rangle \xrightarrow{\gamma} \langle Par; \sqsubseteq \rangle$$



$$\gamma(\bot) = \emptyset$$

$$\gamma(odd) = \{n \in \mathbb{N}_0 \mid n \mod 2 = 1\}$$

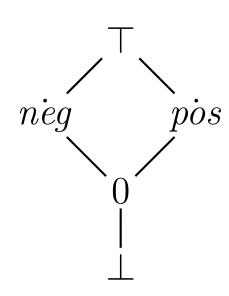
$$\gamma(even) = \{n \in \mathbb{N}_0 \mid n \mod 2 = 0\}$$

$$\gamma(\top) = \mathbb{N}_0$$

A simple sign domain

$$Sign = \{\top, pos, neg, 0, \bot\}$$

$$\langle \wp(\mathbb{Z}); \subseteq \rangle \xrightarrow{\gamma} \langle Sign; \sqsubseteq \rangle$$



$$\gamma(\bot) = \emptyset$$

$$\gamma(0) = \{0\}$$

$$\gamma(p\dot{o}s) = \{n \in \mathbb{Z} \mid n \ge 0\}$$

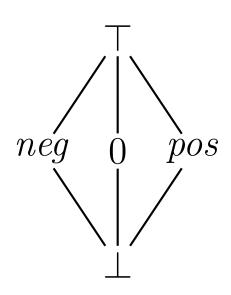
$$\gamma(n\dot{e}g) = \{n \in \mathbb{Z} \mid n \le 0\}$$

$$\gamma(\top) = \mathbb{Z}$$

Another simple sign domain

$$Sign = \{\top, pos, neg, 0, \bot\}$$

$$\langle \wp(\mathbb{Z}); \subseteq \rangle \xrightarrow{\gamma} \langle Sign; \sqsubseteq \rangle$$



$$\gamma(\bot) = \emptyset$$

$$\gamma(0) = \{0\}$$

$$\gamma(pos) = \{n \in \mathbb{Z} \mid n > 0\}$$

$$\gamma(neg) = \{n \in \mathbb{Z} \mid n < 0\}$$

$$\gamma(\top) = \mathbb{Z}$$

The improved sign domain

$$Sign = \{ \top, \neq 0, pos, neg, pos, neg, 0, \bot \}$$

$$\langle \wp(\mathbb{Z}); \subseteq \rangle \xrightarrow{\gamma} \langle Sign; \sqsubseteq \rangle$$

$$\gamma(\bot) = \emptyset$$

$$\gamma(0) = \{0\}$$

$$\gamma(pos) = \{n \in \mathbb{Z} \mid n > 0\}$$

$$\gamma(neg) = \{n \in \mathbb{Z} \mid n < 0\}$$

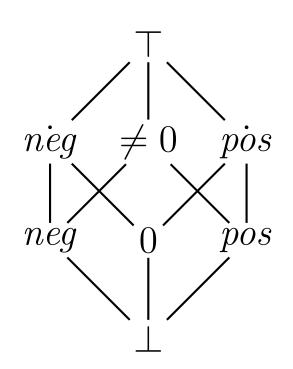
$$\gamma(pos) = \{n \in \mathbb{Z} \mid n \geq 0\}$$

$$\gamma(neg) = \{n \in \mathbb{Z} \mid n \leq 0\}$$

$$\gamma(neg) = \{n \in \mathbb{Z} \mid n \leq 0\}$$

$$\gamma(\neq 0) = \{n \in \mathbb{Z} \mid n \neq 0\}$$

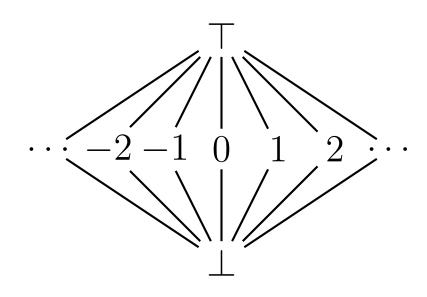
$$\gamma(\top) = \mathbb{Z}$$



The constant propagation domain (Kildall:73)

$$Const = \mathbb{Z} \cup \{\top, \bot\}$$

$$\langle \wp(\mathbb{Z}); \subseteq \rangle \xrightarrow{\gamma} \langle Const; \sqsubseteq \rangle$$



where

$$\gamma(\top) = \mathbb{Z}$$

$$\gamma(n) = \{n\}$$

$$\gamma(\bot) = \emptyset$$

$$\alpha(\{n_1, n_2, \dots\}) = \top$$
$$\alpha(\{n\}) = n$$
$$\alpha(\emptyset) = \bot$$

This domain extends naturally to string, characters, ...

Simple congruences (Granger'89)

Cong =
$$\{\bot\} \cup \{a + b\mathbb{Z} \mid a, b \in \mathbb{Z} : (b = 0) \lor (0 \le a < b)\}$$

$$\langle \wp(\mathbb{Z}); \subseteq \rangle \xrightarrow{\gamma} \langle Cong; \sqsubseteq \rangle$$

$$\gamma(\bot) = \emptyset$$
$$\gamma(a + b\mathbb{Z}) = \{a + bz \mid z \in \mathbb{Z}\}$$

... 0+0Z 1+0Z 2+0Z ...

 $x \equiv a \mod b$

bot.

0+17

/ | \

... 1+6Z

0+2Z 1+2Z 1+3Z ...

Ordering:

$$\bot \sqsubseteq (a + b\mathbb{Z})$$
$$(a + b\mathbb{Z}) \sqsubseteq (a' + b'\mathbb{Z}) \iff (b' \mid \gcd(|a - a'|, b))$$

Simple congruences, continued

Join:
$$\bot \sqcup (a + b\mathbb{Z}) = a + b\mathbb{Z}$$

 $(a + b\mathbb{Z}) \sqcup \bot = a + b\mathbb{Z}$
 $(a + b\mathbb{Z}) \sqcup (a' + b'\mathbb{Z}) = (\min(a, a') + \gcd(|a - a'|, b, b')\mathbb{Z})$

Note: there are no infinite, strictly increasing chains. However there are infinite, strictly decreasing chains:

$$0 + 1\mathbb{Z} \supset 1 + 2\mathbb{Z} \supset 1 + 6\mathbb{Z} \supset 1 + 12\mathbb{Z} \supset \dots$$

hence we may need a narrowing...

Simple congruences, continued

Join:
$$\bot \sqcup (a + b\mathbb{Z}) = a + b\mathbb{Z}$$

 $(a + b\mathbb{Z}) \sqcup \bot = a + b\mathbb{Z}$
 $(a + b\mathbb{Z}) \sqcup (a' + b'\mathbb{Z}) = (\min(a, a') + \gcd(|a - a'|, b, b')\mathbb{Z})$

Note: there are no infinite, strictly increasing chains. However there are infinite, strictly decreasing chains:

$$0 + 1\mathbb{Z} \supset 1 + 2\mathbb{Z} \supset 1 + 6\mathbb{Z} \supset 1 + 12\mathbb{Z} \supset \dots$$

hence we may need a narrowing...

Q: what do the elements $0 + 2\mathbb{Z}$ and $1 + 2\mathbb{Z}$ represent together with \perp and $0 + 1\mathbb{Z}$?

Simple congruences, continued

Join:
$$\bot \sqcup (a + b\mathbb{Z}) = a + b\mathbb{Z}$$

 $(a + b\mathbb{Z}) \sqcup \bot = a + b\mathbb{Z}$
 $(a + b\mathbb{Z}) \sqcup (a' + b'\mathbb{Z}) = (\min(a, a') + \gcd(|a - a'|, b, b')\mathbb{Z})$

Note: there are no infinite, strictly increasing chains. However there are infinite, strictly decreasing chains:

$$0 + 1\mathbb{Z} \supset 1 + 2\mathbb{Z} \supset 1 + 6\mathbb{Z} \supset 1 + 12\mathbb{Z} \supset \dots$$

hence we may need a narrowing...

Q: what do the elements $0 + 2\mathbb{Z}$ and $1 + 2\mathbb{Z}$ represent together with \perp and $0 + 1\mathbb{Z}$?

Q: what about ..., $0 + 0\mathbb{Z}$, $1 + 0\mathbb{Z}$, $2 + 0\mathbb{Z}$, $3 + 0\mathbb{Z}$, ... together with \bot and $0 + 1\mathbb{Z}$?

Simple congruence operations

The arithmetic operators over congruences, e.g., addition:

$$(a + b\mathbb{Z}) + \bot = \bot$$

$$\bot + (a + b\mathbb{Z}) = \bot$$

$$(a + b\mathbb{Z}) + (c + d\mathbb{Z}) = ((a + c) \mod \gcd(b, d)) + \gcd(b, d)\mathbb{Z}$$

and multiplication:

$$(a + b\mathbb{Z}) * \bot = \bot$$

$$\bot * (a + b\mathbb{Z}) = \bot$$

$$(a + b\mathbb{Z}) * (c + d\mathbb{Z}) = (ac \mod \gcd(ad, bc, bd))$$

$$+ \gcd(ad, bc, bd)\mathbb{Z}$$

Intervals (Moore'66, Cousot-Cousot'76)

$$Interval = \{\bot\} \cup \{[l;u] \mid l \in \mathbb{Z} \cup \{-\infty\}$$

$$\land u \in \mathbb{Z} \cup \{+\infty\} \land l \leq u\}$$

$$\vdots$$

$$\land u \in \mathbb{Z} \cup \{+\infty\} \land l \leq u\}$$

$$\vdots$$

$$\gamma(\bot) = \emptyset$$

$$\gamma([a;b]) = \{n \in \mathbb{Z} \mid a \le n \le b\} \quad \alpha(S) = [\min S; \max S]$$

Note: intervals over $\mathbb R$ also work, however over $\mathbb Q$ the resulting domain is not complete.

Intervals, continued (2/3)

Least upper bounds:

$$X \sqcup \bot = X$$
$$\bot \sqcup Y = Y$$
$$[a; b] \sqcup [c; d] = [\min(a, c); \max(b, d)]$$

Greatest lower bounds:

$$X \sqcap \bot = \bot$$

$$\bot \sqcap Y = \bot$$

$$[a;b] \sqcap [c;d] = \begin{cases} [\max(a,c); \min(b,d)] & \text{if } \max(a,c) \leq \min(b,d) \\ \bot & \text{otherwise} \end{cases}$$

Intervals, continued (3/3)

Interval addition:

Widening and narrowing:

Interval widening example

Widening with \perp yields identity:

$$\perp \nabla [1; 100] = [1; 100]$$

Increasing upper bounds expand to $+\infty$:

$$[1;100] \nabla [1;101] = [1;+\infty]$$

Decreasing lower bounds expand to $-\infty$:

$$[1; +\infty] \nabla [0; 102] = [-\infty; +\infty]$$

Convex Polyhedra

Convex Polyhedra (1/2)

We can use inequalities to describe the relationship between numerical variables of a program, e.g.:

$$y \ge 1 \land x + y \ge 3 \land -x + y \le 1$$

for two variables x and y.

The inequalities represent a convex polyhedron.

These form the abstract values of the *polyhedra* domain, which is a *relational* abstract domain.

Representation (implementation)

Convex polyhedra are represented using *double* description (with variables $X = \{x_1, ..., x_n\}$):

- a system of inequalities (A,B) where A is an $m \times n$ matrix, B is an m vector, and $\gamma(A,B) = \{X \mid AX \geq B\}$
- a a system of generators (V,R) of vertices and rays where $V=\{V_1,\ldots,V_k\},\,R=\{R_1,\ldots,R_l\},$ and $\gamma(V,R)=\{\Sigma_{i=1}^k\lambda_iV_i+\Sigma_{i=1}^l\mu_iR_i\mid\lambda_i\geq 0\;\wedge\;\mu_i\geq 0\;\wedge\;\Sigma_{i=1}^k\lambda_i=1\}$

An domain implementation will typically translate back and forth between the two, trying to minimize the number of conversions.

Representation example

For example, we can represent

$$y \ge 1 \land x + y \ge 3 \land -x + y \le 1$$

as a system of inequalities: $AX \geq B$

$$\begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \ge \begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix}$$

as a system of generators:

$$V = \{V_0 : (2,1), V_1 : (1,2)\}$$

$$R = \{R_0 : (1,0), R_1 : (1,1)\}$$

Convex Polyhedra (2/2)

Operations, some of which are easier on one representation, rather than the other:

- returns a convex hull, which is an over-approximation of the union of two polyhedra.
 - Easily expressed as a union of the corresponding generators.
- returns the polyhedron representing the intersection of two polyhedra.
 - Easily expressed as the conjunction of the two constraint systems.

But there is a catch...

The polyhedra lattice is not complete: there exists strictly infinite chains for which the limit is not in the domain. Example: a disk.

Hence for some sets, e.g., a disk, there is no best abstraction.

As a consequence the abstraction to polyhedra is not a Galois connection.

A possible relaxation is to consider only concretization functions...

Concretization-based abstract interpretation

Proposition. Assume $\langle C; \sqsubseteq, \sqcup \rangle$ is a poset, $F: C \to C$ is a continuous function, $\bot_c \in C$ such that $\bot_c \sqsubseteq F(\bot_c)$, and $\bigsqcup_{n \in \mathbb{N}} F^n(\bot_c)$ exists.

Assume A is a set, $\gamma:A\to C$ is a function, \leq is a preorder, defined as: $a\leq a'\iff \gamma(a)\sqsubseteq \gamma(a'), \perp_a\in A$ such that $\perp_c\sqsubseteq \gamma(\perp_a), F^\sharp:A\to A$ is a monotone function such that $F\circ\gamma\sqsubseteq\gamma\circ F^\sharp$ and ∇ is a widening operator.

Then the upward iteration sequence with widening is ultimately stationary with limit a, such that $\operatorname{lfp} F \sqsubseteq \gamma(a)$ and $F^{\sharp}(a) \leq a$.

Alternative frameworks

If we relax the Galois connection requirement there are other options.

Cousot-Cousot "Abstract interpretation frameworks" (JLC92) contains a range of alternative frameworks, like the previous concretization-based one.

As an alternative, Miné suggests a framework based on partial Galois connections, in which α is a partial function.

Want more abstractions?

There are many more numerical abstractions, see, e.g., Miné's thesis or this link:

http://bugseng.com/products/ppl/abstractions

The *Two Variables per Inequality* (TVPI) domain is a restricted form of polyhedra, only expressing relations between two variables: $a_{ij}\mathbf{x}_i + b_{ij}\mathbf{x}_j \leq c_{ij}$

Miné's *Octagon* domain is another restricted form of polyhedra, also expressing relations between two variables: $\pm \mathbf{x}_i \pm \mathbf{x}_j \leq c_{ij}$

Q: what do we get by restricting to one variable per inequality?

Numerical domains, botanically

ATTRIBUTE INDEPENDENT DOMAINS (NON-RELATIONAL):

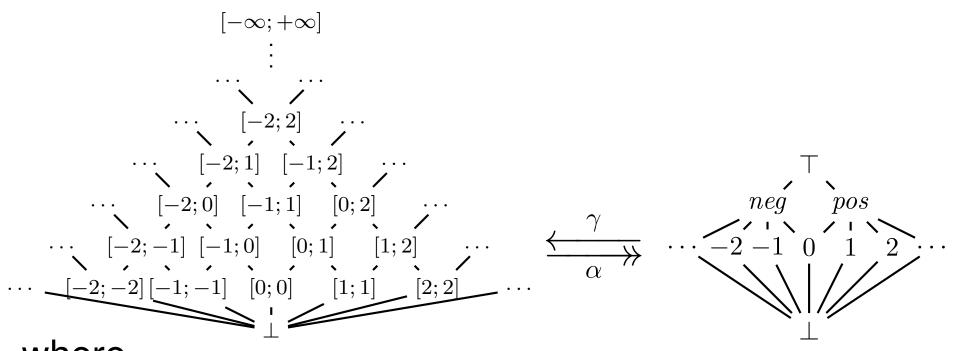
Parity, Sign, Constants, Simple Congruences, Intervals, . . .

RELATIONAL DOMAINS:

Polyhedra, Octagons, TVPI, ...

A few connections between numerical abstractions

From intervals to a constant/sign combination



where

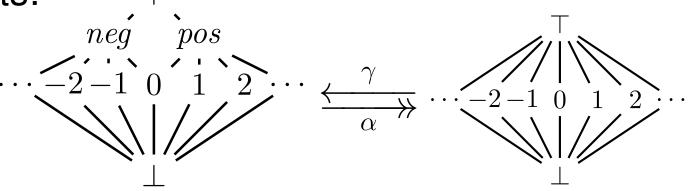
$$\alpha(\bot) = \bot$$

$$\alpha([a;a]) = a$$

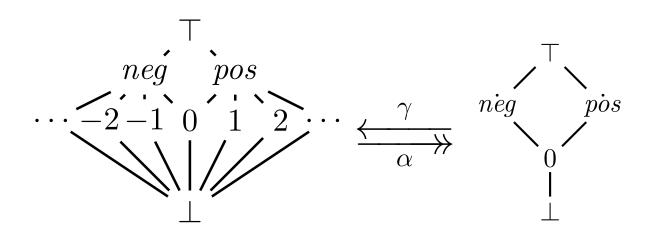
$$\alpha([a;b]) = \begin{cases} pos & \text{if } a \ge 0, a \ne b \\ neg & \text{if } b \le 0, a \ne b \\ \top & \text{otherwise} \end{cases}$$

From the constant/sign combination to ...

This domain can (naturally) be abstracted to both constants:

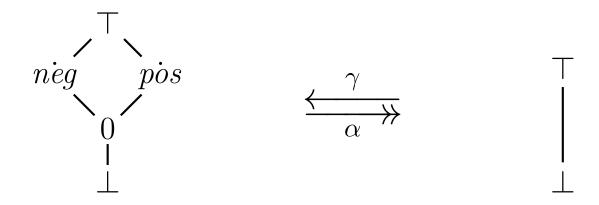


and signs:



From the constant/sign combination to ...

Both can be abstracted into a simple two-point domain:

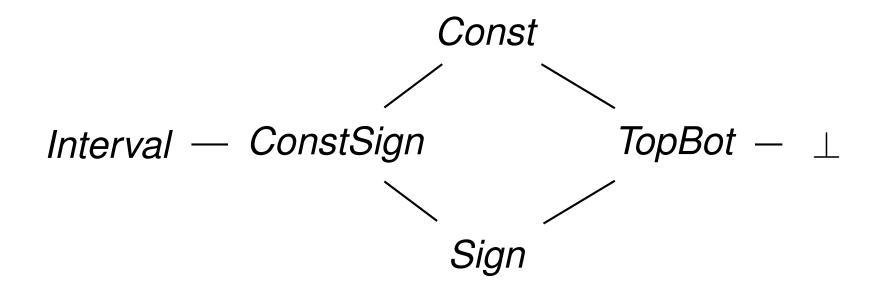


and all the way down to a one-point lattice:

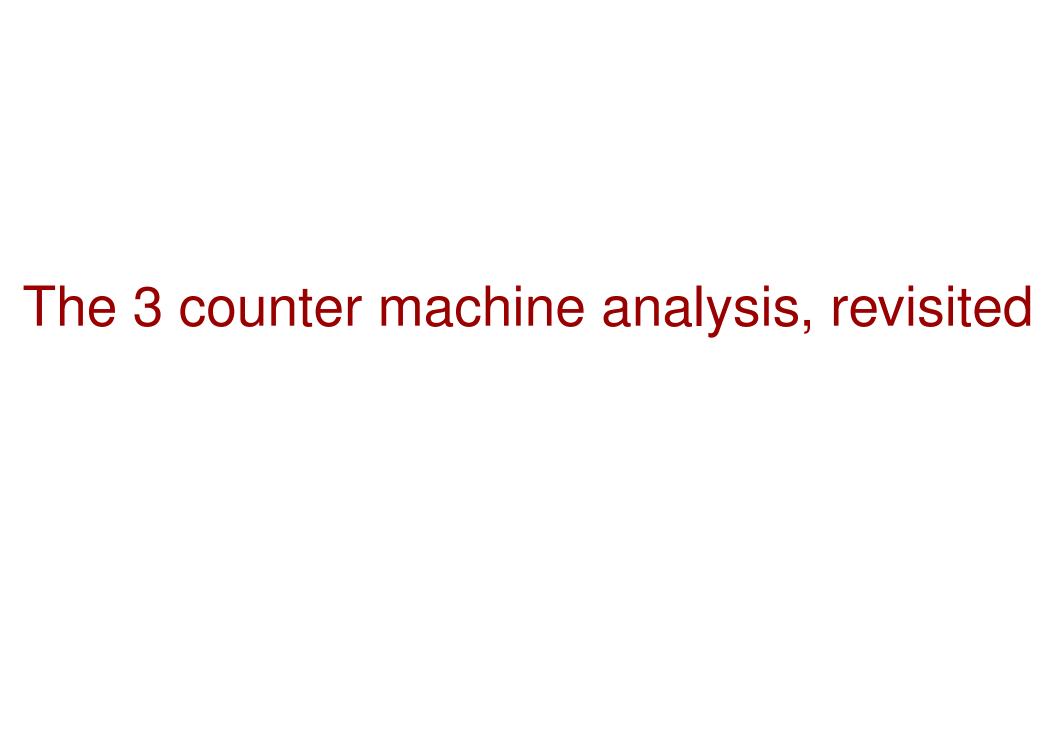
$$\begin{array}{ccc} \top & & \\ \downarrow & & \stackrel{\gamma}{\longleftrightarrow} & \\ \bot & & \end{array}$$

Connection summary

To summarize:



A nice lattice of lattices! =



The 3 counter machine analysis, revisited

We arrived at an abstract transition function F#, but the analysis is the least fixed point lfp of F#.

Q: Which fixed point theorem(s) from this morning (slide 12+14) are we relying on?

The resulting analysis associates an abstract memory to each program point:

$$\wp(PC \times \mathbb{N}_0 \times \mathbb{N}_0 \times \mathbb{N}_0) \xrightarrow{\gamma} PC \to (Parity \times Parity \times Parity)$$

The resulting analysis associates an abstract memory to each program point:

$$\wp(PC \times \mathbb{N}_0 \times \mathbb{N}_0 \times \mathbb{N}_0) \xrightarrow{\gamma} PC \to (Parity \times Parity \times Parity)$$

Alternatively we could have abstracted the components separately as follows:

$$\wp(PC \times \mathbb{N}_0 \times \mathbb{N}_0 \times \mathbb{N}_0) \xrightarrow{\gamma} \wp(PC) \times (Parity \times Parity \times Parity)$$

The resulting analysis associates an abstract memory to each program point:

$$\wp(PC \times \mathbb{N}_0 \times \mathbb{N}_0 \times \mathbb{N}_0) \xrightarrow{\gamma} PC \to (Parity \times Parity \times Parity)$$

Alternatively we could have abstracted the components separately as follows:

$$\wp(PC \times \mathbb{N}_0 \times \mathbb{N}_0 \times \mathbb{N}_0) \xrightarrow{\gamma} \wp(PC) \times (Parity \times Parity \times Parity)$$

Q: how would you characterize the first analysis?

The resulting analysis associates an abstract memory to each program point:

$$\wp(PC \times \mathbb{N}_0 \times \mathbb{N}_0 \times \mathbb{N}_0) \xrightarrow{\gamma} PC \to (Parity \times Parity \times Parity)$$

Alternatively we could have abstracted the components separately as follows:

$$\wp(PC \times \mathbb{N}_0 \times \mathbb{N}_0 \times \mathbb{N}_0) \xrightarrow{\gamma} \wp(PC) \times (Parity \times Parity \times Parity)$$

Q: how would you characterize the first analysis?

Q: how would you characterize the second?

The resulting analysis associates an abstract memory to each program point:

$$\wp(PC \times \mathbb{N}_0 \times \mathbb{N}_0 \times \mathbb{N}_0) \xrightarrow{\gamma} PC \to (Parity \times Parity \times Parity)$$

Alternatively we could have abstracted the components separately as follows:

$$\wp(PC \times \mathbb{N}_0 \times \mathbb{N}_0 \times \mathbb{N}_0) \xrightarrow{\gamma} \wp(PC) \times (Parity \times Parity \times Parity)$$

Q: how would you characterize the first analysis?

Q: how would you characterize the second?

Q: how would you characterize a first projection?

$$\wp(PC \times \mathbb{N}_0 \times \mathbb{N}_0 \times \mathbb{N}_0) \xrightarrow{\gamma} \wp(PC)$$

Alternative 3 counter machine analyses?

Q: What changes if we want to switch to a different numerical abstraction (intervals, congruences, ...)? or rather,

Q: which assumptions about Parity did we rely on?

Alternative 3 counter machine analyses?

Q: What changes if we want to switch to a different numerical abstraction (intervals, congruences, ...)?

or rather,

Q: which assumptions about Parity did we rely on?

$$\frac{\wp(\mathbb{N}_0) \iff Par}{\wp(\mathbb{N}_0 \times \mathbb{N}_0 \times \mathbb{N}_0) \iff \wp(\mathbb{N}_0) \times \wp(\mathbb{N}_0)} \qquad \frac{\wp(\mathbb{N}_0) \iff Par}{\wp(\mathbb{N}_0) \times \wp(\mathbb{N}_0) \times \wp(\mathbb{N}_0) \iff Par \times Par \times Par} \qquad \frac{\wp(\mathbb{N}_0 \times \mathbb{N}_0 \times \mathbb{N}_0) \iff Par \times Par \times Par}{\wp(\mathbb{N}_0 \times \mathbb{N}_0 \times \mathbb{N}_0) \iff Par \times Par \times Par}$$

Summary

Summary

1.	More approximation methods (Cousot-Cousot:JLP92):
	 Relational and attribute independent analysis
	 Inducing, abstracting, approximating fixed points
	□ Widening, narrowing
	□ Forwards/backwards analysis
2.	A catalogue of abstractions
	□ Toolbox abstractions
	□ Structural abstractions: sums, pairs/tuples,
	□ Numerical abstractions: constants, intervals, congruences, polyhedra,
	□ Concretization-based abstract interpretation, briefly
	A retrospective on the 3 counter machine analysis